These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 21376957)
1. A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Filip J; Sefčovičová J; Tomčík P; Gemeiner P; Tkac J Talanta; 2011 Apr; 84(2):355-61. PubMed ID: 21376957 [TBL] [Abstract][Full Text] [Related]
2. Electrocatalytic oxidation of NADH with Meldola's blue functionalized carbon nanotubes electrodes. Zhu L; Zhai J; Yang R; Tian C; Guo L Biosens Bioelectron; 2007 May; 22(11):2768-73. PubMed ID: 17267199 [TBL] [Abstract][Full Text] [Related]
3. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Liu G; Lin Y Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058 [TBL] [Abstract][Full Text] [Related]
4. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Zhang M; Smith A; Gorski W Anal Chem; 2004 Sep; 76(17):5045-50. PubMed ID: 15373440 [TBL] [Abstract][Full Text] [Related]
5. Carbon-nanotube-alginate composite modified electrode fabricated by in situ gelation for capillary electrophoresis. Wei B; Wang J; Chen Z; Chen G Chemistry; 2008; 14(31):9779-85. PubMed ID: 18773408 [TBL] [Abstract][Full Text] [Related]
6. Poly(brilliant cresyl blue)-carbonnanotube modified electrodes for determination of NADH and fabrication of ethanol dehydrogenase-based biosensor. Yang DW; Liu HH Biosens Bioelectron; 2009 Dec; 25(4):733-8. PubMed ID: 19740647 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical biosensors based on redox carbon nanotubes prepared by noncovalent functionalization with 1,10-phenanthroline-5,6-dione. Mao X; Wu Y; Xu L; Cao X; Cui X; Zhu L Analyst; 2011 Jan; 136(2):293-8. PubMed ID: 20957284 [TBL] [Abstract][Full Text] [Related]
8. Chemical reversibility and stable low-potential NADH detection with nonconventional conducting polymer nanotubule modified glassy carbon electrodes. Valentini F; Salis A; Curulli A; Palleschi G Anal Chem; 2004 Jun; 76(11):3244-8. PubMed ID: 15167808 [TBL] [Abstract][Full Text] [Related]
9. Polymerized ionic liquid-wrapped carbon nanotubes: the promising composites for direct electrochemistry and biosensing of redox protein. Xiao C; Chu X; Wu B; Pang H; Zhang X; Chen J Talanta; 2010 Mar; 80(5):1719-24. PubMed ID: 20152402 [TBL] [Abstract][Full Text] [Related]
10. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Kang X; Mai Z; Zou X; Cai P; Mo J Anal Biochem; 2007 Oct; 369(1):71-9. PubMed ID: 17678866 [TBL] [Abstract][Full Text] [Related]
11. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Kang X; Mai Z; Zou X; Cai P; Mo J Anal Biochem; 2007 Apr; 363(1):143-50. PubMed ID: 17288983 [TBL] [Abstract][Full Text] [Related]
12. Fast cholesterol detection using flow injection microfluidic device with functionalized carbon nanotubes based electrochemical sensor. Wisitsoraat A; Sritongkham P; Karuwan C; Phokharatkul D; Maturos T; Tuantranont A Biosens Bioelectron; 2010 Dec; 26(4):1514-20. PubMed ID: 20727731 [TBL] [Abstract][Full Text] [Related]
13. Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Hao C; Ding L; Zhang X; Ju H Anal Chem; 2007 Jun; 79(12):4442-7. PubMed ID: 17492835 [TBL] [Abstract][Full Text] [Related]
15. Highly ordered mesoporous carbons as electrode material for the construction of electrochemical dehydrogenase- and oxidase-based biosensors. Zhou M; Shang L; Li B; Huang L; Dong S Biosens Bioelectron; 2008 Nov; 24(3):442-7. PubMed ID: 18541421 [TBL] [Abstract][Full Text] [Related]
16. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Banks CE; Compton RG Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Zhou M; Zhai Y; Dong S Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529 [TBL] [Abstract][Full Text] [Related]
18. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications. Penza M; Rossi R; Alvisi M; Serra E Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374 [TBL] [Abstract][Full Text] [Related]
19. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Shobha Jeykumari DR; Sriman Narayanan S Biosens Bioelectron; 2008 Apr; 23(9):1404-11. PubMed ID: 18294834 [TBL] [Abstract][Full Text] [Related]