BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21376964)

  • 1. A sensitive enzymatic method for paraoxon detection based on enzyme inhibition and fluorescence quenching.
    Wang K; Wang L; Jiang W; Hu J
    Talanta; 2011 Apr; 84(2):400-5. PubMed ID: 21376964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow analysis for determination of paraoxon with use of immobilized acetylcholinesterase reactor and new type of chemiluminescent reaction.
    Danet AF; Badea M; Marty JL; Aboul-Enein HY
    Biopolymers; 2000; 57(1):37-42. PubMed ID: 10679638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An acetylcholinesterase biosensor for determination of low concentrations of Paraoxon and Dichlorvos.
    Di Tuoro D; Portaccio M; Lepore M; Arduini F; Moscone D; Bencivenga U; Mita DG
    N Biotechnol; 2011 Dec; 29(1):132-8. PubMed ID: 21600321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulated dye retention for the signal-on fluorometric determination of acetylcholinesterase inhibitor.
    Liao S; Han W; Ding H; Xie D; Tan H; Yang S; Wu Z; Shen G; Yu R
    Anal Chem; 2013 May; 85(10):4968-73. PubMed ID: 23597308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-enhanced Raman scattering detection of cholinesterase inhibitors.
    Liron Z; Zifman A; Heleg-Shabtai V
    Anal Chim Acta; 2011 Oct; 703(2):234-8. PubMed ID: 21889639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle.
    Zhang Y; Hei T; Cai Y; Gao Q; Zhang Q
    Anal Chem; 2012 Mar; 84(6):2830-6. PubMed ID: 22339669
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence-based sensing of p-nitrophenol and p-nitrophenyl substituent organophosphates.
    Paliwal S; Wales M; Good T; Grimsley J; Wild J; Simonian A
    Anal Chim Acta; 2007 Jul; 596(1):9-15. PubMed ID: 17616234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Fluorescence quenching assay of ultratrace horseradish peroxidase using rhodamine dye].
    Ma WS; Huang GX; Liang AH; Jiang ZL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):759-61. PubMed ID: 19455817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiocholine mediated stabilization of in situ produced CdS quantum dots: application for the detection of acetylcholinesterase activity and inhibitors.
    Garai-Ibabe G; Saa L; Pavlov V
    Analyst; 2014 Jan; 139(1):280-4. PubMed ID: 24225492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.
    Sun J; Yang X
    Biosens Bioelectron; 2015 Dec; 74():177-82. PubMed ID: 26141104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical detection of organophosphorus compounds based on Mn-doped ZnSe d-dot enzymatic catalytic sensor.
    Gao X; Tang G; Su X
    Biosens Bioelectron; 2012; 36(1):75-80. PubMed ID: 22534106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Highly sensitive spectrofluorimetric determination of trace amounts of nitrite with N-(1-naphthyl) ethylenediamine].
    Zhou YY; She SK; Lu Q; Zhu CQ; Wang L
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Aug; 25(8):1318-21. PubMed ID: 16329511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA-templated silver nanoclusters for fluorescence turn-on assay of acetylcholinesterase activity.
    Zhang Y; Cai Y; Qi Z; Lu L; Qian Y
    Anal Chem; 2013 Sep; 85(17):8455-61. PubMed ID: 23919577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid crystal-based sensor for real-time detection of paraoxon pesticides based on acetylcholinesterase enzyme inhibition.
    Duong DST; Jang CH
    Mikrochim Acta; 2023 Mar; 190(4):122. PubMed ID: 36890280
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of curcumin by its quenching effect on the fluorescence of Eu3+-tryptophan complex.
    Wang F; Huang W
    J Pharm Biomed Anal; 2007 Jan; 43(1):393-8. PubMed ID: 16904282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-chip integrated hydrolysis, fluorescent labeling, and electrophoretic separation utilized for acetylcholinesterase assay.
    Heleg-Shabtai V; Gratziany N; Liron Z
    Anal Chim Acta; 2006 Jul; 571(2):228-34. PubMed ID: 17723443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resurfaced fluorescent protein as a sensing platform for label-free detection of copper(II) ion and acetylcholinesterase activity.
    Lei C; Wang Z; Nie Z; Deng H; Hu H; Huang Y; Yao S
    Anal Chem; 2015 Feb; 87(3):1974-80. PubMed ID: 25560517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improvement of acetylcholinesterase-based assay for organophosphates in way of identification by reactivators.
    Pohanka M; Jun D; Kuca K
    Talanta; 2008 Oct; 77(1):451-4. PubMed ID: 18804659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulated growth of nanoparticles. Application for sensing nerve gases.
    Virel A; Saa L; Pavlov V
    Anal Chem; 2009 Jan; 81(1):268-72. PubMed ID: 19049371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disposable electrochemical printed gold chips for the analysis of acetylcholinesterase inhibition.
    Dounin V; Veloso AJ; Schulze H; Bachmann TT; Kerman K
    Anal Chim Acta; 2010 Jun; 669(1-2):63-7. PubMed ID: 20510904
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.