These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 21377158)

  • 1. A model of a radially expanding and contracting lymphangion.
    Rahbar E; Moore JE
    J Biomech; 2011 Apr; 44(6):1001-7. PubMed ID: 21377158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pump efficacy in a two-dimensional, fluid-structure interaction model of a chain of contracting lymphangions.
    Elich H; Barrett A; Shankar V; Fogelson AL
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1941-1968. PubMed ID: 34275062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of valve leaflet mechanics on lymphatic pumping assessed using numerical simulations.
    Li H; Mei Y; Maimon N; Padera TP; Baish JW; Munn LL
    Sci Rep; 2019 Jul; 9(1):10649. PubMed ID: 31337769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-order approximation for the pressure-flow relationship of spontaneously contracting lymphangions.
    Quick CM; Venugopal AM; Dongaonkar RM; Laine GA; Stewart RH
    Am J Physiol Heart Circ Physiol; 2008 May; 294(5):H2144-9. PubMed ID: 18326809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lymphatic Valves Separate Lymph Flow Into a Central Stream and a Slow-Moving Peri-Valvular Milieu.
    Pujari A; Smith AF; Hall JD; Mei P; Chau K; Nguyen DT; Sweet DT; Jiménez JM
    J Biomech Eng; 2020 Oct; 142(10):. PubMed ID: 32766737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lymphangion coordination minimally affects mean flow in lymphatic vessels.
    Venugopal AM; Stewart RH; Laine GA; Dongaonkar RM; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1183-9. PubMed ID: 17468331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling flow in collecting lymphatic vessels: one-dimensional flow through a series of contractile elements.
    Macdonald AJ; Arkill KP; Tabor GR; McHale NG; Winlove CP
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H305-13. PubMed ID: 18487438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics.
    Dixon JB; Greiner ST; Gashev AA; Cote GL; Moore JE; Zawieja DC
    Microcirculation; 2006; 13(7):597-610. PubMed ID: 16990218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanosensing in developing lymphatic vessels.
    Planas-Paz L; Lammert E
    Adv Anat Embryol Cell Biol; 2014; 214():23-40. PubMed ID: 24276884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels.
    Kornuta JA; Nepiyushchikh Z; Gasheva OY; Mukherjee A; Zawieja DC; Dixon JB
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(9):R1122-34. PubMed ID: 26333787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [A dynamic model describing lymphatic circulation].
    Yao W; Ding G; Shen X; Wang S; Dang R; Chen E
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Aug; 25(4):831-4. PubMed ID: 18788290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular regulation of lymphatic contractility.
    Muthuchamy M; Zawieja D
    Ann N Y Acad Sci; 2008; 1131():89-99. PubMed ID: 18519962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model for mechanics of primary lymphatic valves.
    Mendoza E; Schmid-Schönbein GW
    J Biomech Eng; 2003 Jun; 125(3):407-14. PubMed ID: 12929246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Entrainment of Lymphatic Contraction to Oscillatory Flow.
    Mukherjee A; Hooks J; Nepiyushchikh Z; Dixon JB
    Sci Rep; 2019 Apr; 9(1):5840. PubMed ID: 30967585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the microlymphatic valve in the propagation of spontaneous rhythmical lymphatic motion in rat.
    Zhang J; Li H; Xiu R
    Clin Hemorheol Microcirc; 2000; 23(2-4):349-53. PubMed ID: 11321462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid dynamics and leukocyte transit in the lymphatic system.
    Li H; Zhang J; Padera TP; Baish JW; Munn LL
    PNAS Nexus; 2024 Jun; 3(6):pgae195. PubMed ID: 38827815
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Network Scale Modeling of Lymph Transport and Its Effective Pumping Parameters.
    Jamalian S; Davis MJ; Zawieja DC; Moore JE
    PLoS One; 2016; 11(2):e0148384. PubMed ID: 26845031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal image-based computational modeling of nitric oxide transport in a rat mesenteric lymphatic vessel.
    Wilson JT; Wang W; Hellerstedt AH; Zawieja DC; Moore JE
    J Biomech Eng; 2013 May; 135(5):51005. PubMed ID: 24231961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microlymphatics and lymph flow.
    Schmid-Schönbein GW
    Physiol Rev; 1990 Oct; 70(4):987-1028. PubMed ID: 2217560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of a chain of collapsible contracting lymphangions with progressive valve closure.
    Bertram CD; Macaskill C; Moore JE
    J Biomech Eng; 2011 Jan; 133(1):011008. PubMed ID: 21186898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.