BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21377209)

  • 1. Community effects of carbon nanotubes in aquatic sediments.
    Velzeboer I; Kupryianchyk D; Peeters ET; Koelmans AA
    Environ Int; 2011 Aug; 37(6):1126-30. PubMed ID: 21377209
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiwalled carbon nanotubes at environmentally relevant concentrations affect the composition of benthic communities.
    Velzeboer I; Peeters ET; Koelmans AA
    Environ Sci Technol; 2013 Jul; 47(13):7475-82. PubMed ID: 23713543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments.
    Kwadijk CJ; Velzeboer I; Koelmans AA
    Chemosphere; 2013 Feb; 90(5):1631-6. PubMed ID: 23041036
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects at molecular level of multi-walled carbon nanotubes (MWCNT) in Chironomus riparius (DIPTERA) aquatic larvae.
    Martínez-Paz P; Negri V; Esteban-Arranz A; Martínez-Guitarte JL; Ballesteros P; Morales M
    Aquat Toxicol; 2019 Apr; 209():42-48. PubMed ID: 30690261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-term recovery of benthic communities in sediments amended with activated carbon.
    Kupryianchyk D; Peeters ET; Rakowska MI; Reichman EP; Grotenhuis JT; Koelmans AA
    Environ Sci Technol; 2012 Oct; 46(19):10735-42. PubMed ID: 22934596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of carbon nanotubes to freshwater aquatic invertebrates.
    Mwangi JN; Wang N; Ingersoll CG; Hardesty DK; Brunson EL; Li H; Deng B
    Environ Toxicol Chem; 2012 Aug; 31(8):1823-30. PubMed ID: 22610786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of carbon nanotubes on phosphorus adsorption behaviors on aquatic sediments.
    Qian J; Li K; Wang P; Wang C; Shen M; Liu J; Tian X; Lu B
    Ecotoxicol Environ Saf; 2017 Aug; 142():230-236. PubMed ID: 28415026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Baseline ecological risk assessment of the Calcasieu Estuary, Louisiana: Part 3. An evaluation of the risks to benthic invertebrates associated with exposure to contaminated sediments.
    MacDonald DD; Ingersoll CG; Kemble NE; Smorong DE; Sinclair JA; Lindskoog R; Gaston G; Sanger D; Carr RS; Biedenbach J; Gouguet R; Kern J; Shortelle A; Field LJ; Meyer J
    Arch Environ Contam Toxicol; 2011 Jul; 61(1):29-58. PubMed ID: 21442248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scale-dependency of macroinvertebrate communities: responses to contaminated sediments within run-of-river dams.
    Colas F; Archaimbault V; Devin S
    Sci Total Environ; 2011 Mar; 409(7):1336-43. PubMed ID: 21272919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Field validation of sediment zinc toxicity.
    Burton GA; Nguyen LT; Janssen C; Baudo R; McWilliam R; Bossuyt B; Beltrami M; Green A
    Environ Toxicol Chem; 2005 Mar; 24(3):541-53. PubMed ID: 15779753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting the impact of heavy metal contaminated sediment on benthic macroinvertebrate communities in tropical streams.
    Bere T; Dalu T; Mwedzi T
    Sci Total Environ; 2016 Dec; 572():147-156. PubMed ID: 27494661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dispersibility and dispersion stability of carbon nanotubes in synthetic aquatic growth media and natural freshwater.
    Glomstad B; Zindler F; Jenssen BM; Booth AM
    Chemosphere; 2018 Jun; 201():269-277. PubMed ID: 29525654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fate and effects of sediment-associated polycyclic musk HHCB in subtropical freshwater microcosms.
    Peng FJ; Kiggen F; Pan CG; Bracewell SA; Ying GG; Salvito D; Selck H; Van den Brink PJ
    Ecotoxicol Environ Saf; 2019 Mar; 169():902-910. PubMed ID: 30597790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of iron on benthic macroinvertebrate communities in the field.
    Peters A; Crane M; Adams W
    Bull Environ Contam Toxicol; 2011 Jun; 86(6):591-5. PubMed ID: 21516455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slow avoidance response to contaminated sediments elicits sublethal toxicity to benthic invertebrates.
    Ward DJ; Simpson SL; Jolley DF
    Environ Sci Technol; 2013 Jun; 47(11):5947-53. PubMed ID: 23634897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting benthic impacts at Scottish fish farms.
    Mayor DJ; Zuur AF; Solan M; Paton GI; Killham K
    Environ Sci Technol; 2010 Mar; 44(6):2079-84. PubMed ID: 20178333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of multiwalled carbon nanotubes on the bioavailability and toxicity of diphenhydramine to Pimephales promelas in sediment exposures.
    Myer MH; Henderson WM; Black MC
    Environ Toxicol Chem; 2017 Feb; 36(2):320-328. PubMed ID: 27442616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between benthic macroinvertebrate community structure and geospatial habitat, in-stream water chemistry, and surfactants in the effluent-dominated Trinity River, Texas, USA.
    Slye JL; Kennedy JH; Johnson DR; Atkinson SF; Dyer SD; Ciarlo M; Stanton K; Sanderson H; Nielsen AM; Price BB
    Environ Toxicol Chem; 2011 May; 30(5):1127-38. PubMed ID: 21312245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical review of mercury sediment quality values for the protection of benthic invertebrates.
    Conder JM; Fuchsman PC; Grover MM; Magar VS; Henning MH
    Environ Toxicol Chem; 2015 Jan; 34(1):6-21. PubMed ID: 25319944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.
    Lindgren JF; Hassellöv IM; Dahllöf I
    Aquat Toxicol; 2014 Jan; 146():230-8. PubMed ID: 24326190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.