BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2137729)

  • 1. Functional and morphological characteristics of compensated and decompensated cardiac hypertrophy in dogs with chronic infrarenal aorto-caval fistulas.
    Legault F; Rouleau JL; Juneau C; Rose C; Rakusan K
    Circ Res; 1990 Mar; 66(3):846-59. PubMed ID: 2137729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cardiac hypertrophy and heart failure due to volume overload in the rat.
    Wang X; Ren B; Liu S; Sentex E; Tappia PS; Dhalla NS
    J Appl Physiol (1985); 2003 Feb; 94(2):752-63. PubMed ID: 12531914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Morphometric analysis of collagen network and plasma perfused capillary bed in the myocardium of rats during evolution of cardiac hypertrophy.
    Michel JB; Salzmann JL; Ossondo Nlom M; Bruneval P; Barres D; Camilleri JP
    Basic Res Cardiol; 1986; 81(2):142-54. PubMed ID: 2427067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the surgical creation of volume load by aorto-caval shunt in rats.
    Ocampo C; Ingram P; Ilbawi M; Arcilla R; Gupta M
    Mol Cell Biochem; 2003 Sep; 251(1-2):139-43. PubMed ID: 14575315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The renin-angiotensin system and volume overload-induced cardiac hypertrophy in rats. Effects of angiotensin converting enzyme inhibitor versus angiotensin II receptor blocker.
    Ruzicka M; Yuan B; Harmsen E; Leenen FH
    Circulation; 1993 Mar; 87(3):921-30. PubMed ID: 8443912
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphometry and ultrastructure of heart hypertrophy induced by chronic volume overload (aorto-caval fistula in the rat).
    Hatt PY; Rakusan K; Gastineau P; Laplace M
    J Mol Cell Cardiol; 1979 Oct; 11(10):989-98. PubMed ID: 160467
    [No Abstract]   [Full Text] [Related]  

  • 7. Role of myocardial inducible nitric oxide synthase in contractile dysfunction and beta-adrenergic hyporesponsiveness in rats with experimental volume-overload heart failure.
    Gealekman O; Abassi Z; Rubinstein I; Winaver J; Binah O
    Circulation; 2002 Jan; 105(2):236-43. PubMed ID: 11790707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunnel capillaries in hypertrophied myocardium of rats with aorto-caval fistula.
    Ratajska A; Fiejka E; Maksymowicz M; Gawlik Z
    Basic Res Cardiol; 1993; 88(2):120-9. PubMed ID: 7684895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Is secondary myocardial hypertrophy a physiological or pathological adaptive mechanism?].
    Krayenbühl HP
    Z Kardiol; 1982 Aug; 71(8):489-96. PubMed ID: 6215776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Absence, in the hypertrophied rat heart caused by aortocaval fistula, of several metabolic and electrophysiological changes seen in other models of hypertrophy].
    Thollon C; Aussedat J; Verdetti J; Kreher P
    C R Acad Sci III; 1985; 300(16):607-12. PubMed ID: 3158383
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of plasma and tissue atrial natriuretic factor during development of moderate high output heart failure in the rat.
    Qing G; Garcia R
    Cardiovasc Res; 1993 Mar; 27(3):464-70. PubMed ID: 8490948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress-shortening relations and myocardial blood flow in compensated and failing canine hearts with pressure-overload hypertrophy.
    Gaasch WH; Zile MR; Hoshino PK; Apstein CS; Blaustein AS
    Circulation; 1989 Apr; 79(4):872-83. PubMed ID: 2522357
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Proportional arteriolar growth accompanies cardiac hypertrophy induced by volume overload.
    Chen Y; Torry RJ; Baumbach GL; Tomanek RJ
    Am J Physiol; 1994 Dec; 267(6 Pt 2):H2132-7. PubMed ID: 7528989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats.
    Melenovsky V; Benes J; Skaroupkova P; Sedmera D; Strnad H; Kolar M; Vlcek C; Petrak J; Benes J; Papousek F; Oliyarnyk O; Kazdova L; Cervenka L
    Mol Cell Biochem; 2011 Aug; 354(1-2):83-96. PubMed ID: 21465236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regression of left ventricular dilation and hypertrophy after removal of volume overload. Morphological and ultrastructural study.
    Papadimitriou JM; Hopkins BE; Taylor RR
    Circ Res; 1974 Jul; 35(1):127-35. PubMed ID: 4276275
    [No Abstract]   [Full Text] [Related]  

  • 16. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload.
    Izumiya Y; Shiojima I; Sato K; Sawyer DB; Colucci WS; Walsh K
    Hypertension; 2006 May; 47(5):887-93. PubMed ID: 16567591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capillarization in skeletal muscle of rats with cardiac hypertrophy.
    Degens H; Anderson RK; Alway SE
    Med Sci Sports Exerc; 2002 Feb; 34(2):258-66. PubMed ID: 11828235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myocardial morphology and blood flow distribution in chronic volume-overload hypertrophy in dogs.
    Thomas DP; Phillips SJ; Bove AA
    Basic Res Cardiol; 1984; 79(4):379-88. PubMed ID: 6237639
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myocardial beta-adrenergic and mechanical properties in pacing-induced heart failure in dogs.
    Juneau C; Calderone A; Rouleau JL
    Am J Physiol; 1992 May; 262(5 Pt 2):H1458-67. PubMed ID: 1317128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pressure overload, left ventricular hypertrophy on beta-adrenergic receptors, and responsiveness to catecholamines.
    Vatner DE; Homcy CJ; Sit SP; Manders WT; Vatner SF
    J Clin Invest; 1984 May; 73(5):1473-82. PubMed ID: 6325505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.