BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 21377359)

  • 1. Ultrasound-assisted fractionation of the lignocellulosic material.
    García A; Alriols MG; Llano-Ponte R; Labidi J
    Bioresour Technol; 2011 May; 102(10):6326-30. PubMed ID: 21377359
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effect of ultrasound on organosolv black liquor from olive tree pruning residues.
    García A; Alriols MG; Labidi J
    Bioresour Technol; 2012 Mar; 108():155-61. PubMed ID: 22277207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material.
    Subhedar PB; Gogate PR
    Ultrason Sonochem; 2014 Jan; 21(1):216-25. PubMed ID: 23978705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks.
    Egüés I; Sanchez C; Mondragon I; Labidi J
    Bioresour Technol; 2012 Jan; 103(1):239-48. PubMed ID: 22029960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and physico-chemical characterization of hemicelluloses from ultrasound-assisted extractions of partially delignified fast-growing poplar wood through organic solvent and alkaline solutions.
    Yuan TQ; Xu F; He J; Sun RC
    Biotechnol Adv; 2010; 28(5):583-93. PubMed ID: 20493941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products.
    Ingram T; Wörmeyer K; Lima JC; Bockemühl V; Antranikian G; Brunner G; Smirnova I
    Bioresour Technol; 2011 Apr; 102(8):5221-8. PubMed ID: 21349703
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification.
    Ruiz HA; Ruzene DS; Silva DP; da Silva FF; Vicente AA; Teixeira JA
    Appl Biochem Biotechnol; 2011 Jul; 164(5):629-41. PubMed ID: 21274658
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coconut coir pith lignin: A physicochemical and thermal characterization.
    Asoka Panamgama L; Peramune PRUSK
    Int J Biol Macromol; 2018 Jul; 113():1149-1157. PubMed ID: 29518442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of acid-catalysed organosolv fractionation of wheat straw.
    Sidiras D; Koukios E
    Bioresour Technol; 2004 Aug; 94(1):91-8. PubMed ID: 15081492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of different pretreatment methods for lignocellulosic materials. Part II: Influence of pretreatment on the properties of rye straw lignin.
    Wörmeyer K; Ingram T; Saake B; Brunner G; Smirnova I
    Bioresour Technol; 2011 Mar; 102(5):4157-64. PubMed ID: 21208799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapeseed-straw enzymatic digestibility enhancement by sodium hydroxide treatment under ultrasound irradiation.
    Kang KE; Jeong GT; Park DH
    Bioprocess Biosyst Eng; 2013 Aug; 36(8):1019-29. PubMed ID: 23124436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of different pretreatment methods based on residual lignin effect on the enzymatic hydrolysis of switchgrass.
    Nlewem KC; Thrash ME
    Bioresour Technol; 2010 Jul; 101(14):5426-30. PubMed ID: 20219364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biorefinery process for production of paper and oligomers from Leucaena leucocephala K360 with or without prior autohydrolysis.
    Feria MJ; García JC; Díaz MJ; Fernández M; López F
    Bioresour Technol; 2012 Dec; 126():64-70. PubMed ID: 23073090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification.
    Romaní A; Garrote G; López F; Parajó JC
    Bioresour Technol; 2011 May; 102(10):5896-904. PubMed ID: 21392966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature.
    Zhao Y; Wang Y; Zhu JY; Ragauskas A; Deng Y
    Biotechnol Bioeng; 2008 Apr; 99(6):1320-8. PubMed ID: 18023037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of autohydrolysis of Miscanthus x giganteus on lignin structure and organosolv delignification.
    El Hage R; Chrusciel L; Desharnais L; Brosse N
    Bioresour Technol; 2010 Dec; 101(23):9321-9. PubMed ID: 20655207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of biomass degradation mechanism in pretreatment of switchgrass by aqueous ammonia and sodium hydroxide.
    Gupta R; Lee YY
    Bioresour Technol; 2010 Nov; 101(21):8185-91. PubMed ID: 20639115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pretreatment of switchgrass for sugar production with the combination of sodium hydroxide and lime.
    Xu J; Cheng JJ
    Bioresour Technol; 2011 Feb; 102(4):3861-8. PubMed ID: 21194931
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis.
    Sanchez-Silva L; López-González D; Villaseñor J; Sánchez P; Valverde JL
    Bioresour Technol; 2012 Apr; 109():163-72. PubMed ID: 22297048
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing the enzymatic hydrolysis of lignocellulosic biomass by increasing the carboxylic acid content of the associated lignin.
    Nakagame S; Chandra RP; Kadla JF; Saddler JN
    Biotechnol Bioeng; 2011 Mar; 108(3):538-48. PubMed ID: 21246506
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.