These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 21377472)

  • 21. Contribution of buried hydrogen bonds to protein stability. The crystal structures of two barnase mutants.
    Chen YW; Fersht AR; Henrick K
    J Mol Biol; 1993 Dec; 234(4):1158-70. PubMed ID: 8263918
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Co-operative interactions during protein folding.
    Horovitz A; Fersht AR
    J Mol Biol; 1992 Apr; 224(3):733-40. PubMed ID: 1569552
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutational and structural-based analyses of the osmolyte effect on protein stability.
    Takano K; Saito M; Morikawa M; Kanaya S
    J Biochem; 2004 Jun; 135(6):701-8. PubMed ID: 15213245
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stabilization of proteins by enhancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase.
    Golovanov AP; Vergoten G; Arseniev AS
    J Biomol Struct Dyn; 2000 Dec; 18(3):477-91. PubMed ID: 11149522
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Increasing protein stability: importance of DeltaC(p) and the denatured state.
    Fu H; Grimsley G; Scholtz JM; Pace CN
    Protein Sci; 2010 May; 19(5):1044-52. PubMed ID: 20340133
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and energetic responses to cavity-creating mutations in hydrophobic cores: observation of a buried water molecule and the hydrophilic nature of such hydrophobic cavities.
    Buckle AM; Cramer P; Fersht AR
    Biochemistry; 1996 Apr; 35(14):4298-305. PubMed ID: 8605178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece.
    Lee MR; Duan Y; Kollman PA
    Proteins; 2000 Jun; 39(4):309-16. PubMed ID: 10813813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Conformational stability and thermodynamics of folding of ribonucleases Sa, Sa2 and Sa3.
    Pace CN; Hebert EJ; Shaw KL; Schell D; Both V; Krajcikova D; Sevcik J; Wilson KS; Dauter Z; Hartley RW; Grimsley GR
    J Mol Biol; 1998 May; 279(1):271-86. PubMed ID: 9636716
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Contribution of single tryptophan residues to the fluorescence and stability of ribonuclease Sa.
    Alston RW; Urbanikova L; Sevcik J; Lasagna M; Reinhart GD; Scholtz JM; Pace CN
    Biophys J; 2004 Dec; 87(6):4036-47. PubMed ID: 15377518
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Competition between intradomain and interdomain interactions: a buried salt bridge is essential for villin headpiece folding and actin binding.
    Packer LE; Song B; Raleigh DP; McKnight CJ
    Biochemistry; 2011 May; 50(18):3706-12. PubMed ID: 21449557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamics of ribonuclease T1 denaturation.
    Hu CQ; Sturtevant JM; Thomson JA; Erickson RE; Pace CN
    Biochemistry; 1992 May; 31(20):4876-82. PubMed ID: 1591247
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insertion in barnase of a loop sequence from ribonuclease T1. Investigating sequence and structure alignments by protein engineering.
    Vuilleumier S; Fersht AR
    Eur J Biochem; 1994 May; 221(3):1003-12. PubMed ID: 8181455
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamics of protein-peptide interactions in the ribonuclease-S system studied by molecular dynamics and free energy calculations.
    Simonson T; BrĂ¼nger AT
    Biochemistry; 1992 Sep; 31(36):8661-74. PubMed ID: 1390651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The contribution of polar group burial to protein stability is strongly context-dependent.
    Takano K; Scholtz JM; Sacchettini JC; Pace CN
    J Biol Chem; 2003 Aug; 278(34):31790-5. PubMed ID: 12799387
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-polar nuclei in fungal microbial RNases.
    Ilyin VA
    Protein Eng; 1994 Oct; 7(10):1189-95. PubMed ID: 7855133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A general rule for the relationship between hydrophobic effect and conformational stability of a protein: stability and structure of a series of hydrophobic mutants of human lysozyme.
    Takano K; Yamagata Y; Yutani K
    J Mol Biol; 1998 Jul; 280(4):749-61. PubMed ID: 9677301
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Gaussian-chain model for treating residual charge-charge interactions in the unfolded state of proteins.
    Zhou HX
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3569-74. PubMed ID: 11891295
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural response to mutation at a protein-protein interface.
    Vaughan CK; Buckle AM; Fersht AR
    J Mol Biol; 1999 Mar; 286(5):1487-506. PubMed ID: 10064711
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Slow motions in the hydrophobic core of chicken villin headpiece subdomain and their contributions to configurational entropy and heat capacity from solid-state deuteron NMR measurements.
    Vugmeyster L; Ostrovsky D; Khadjinova A; Ellden J; Hoatson GL; Vold RL
    Biochemistry; 2011 Dec; 50(49):10637-46. PubMed ID: 22085262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histidine residues at the N- and C-termini of alpha-helices: perturbed pKas and protein stability.
    Sancho J; Serrano L; Fersht AR
    Biochemistry; 1992 Mar; 31(8):2253-8. PubMed ID: 1540580
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.