These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 21377687)

  • 1. Modelling the thermal behaviour of the low-thermal mass liquid chromatography system.
    Verstraeten M; Pursch M; Eckerle P; Luong J; Desmet G
    J Chromatogr A; 2011 Apr; 1218(16):2252-63. PubMed ID: 21377687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of thermal heterogeneity in hydrophobic interaction chromatography.
    Muca R; Piatkowski W; Antos D
    J Chromatogr A; 2009 Sep; 1216(39):6716-27. PubMed ID: 19698947
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the axial and radial temperature profiles of a chromatographic column. Influence of thermal insulation on column efficiency.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Jan; 1138(1-2):141-57. PubMed ID: 17141792
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of thermal mismatch broadening on column diameter in high-speed liquid chromatography at elevated temperatures.
    Thompson JD; Brown JS; Carr PW
    Anal Chem; 2001 Jul; 73(14):3340-7. PubMed ID: 11476234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of solvent on temperature and thermal peak broadening in capillary zone electrophoresis.
    Porras SP; Marziali E; Gas B; Kenndler E
    Electrophoresis; 2003 May; 24(10):1553-64. PubMed ID: 12761785
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp.
    Xuan X; Hu G; Li D
    Electrophoresis; 2006 Aug; 27(16):3171-80. PubMed ID: 16850504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low thermal mass liquid chromatography.
    Gu B; Cortes H; Luong J; Pursch M; Eckerle P; Mustacich R
    Anal Chem; 2009 Feb; 81(4):1488-95. PubMed ID: 19140670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling of thermal processes in high pressure liquid chromatography: I. Low pressure onset of thermal heterogeneity.
    Kaczmarski K; Kostka J; Zapała W; Guiochon G
    J Chromatogr A; 2009 Sep; 1216(38):6560-74. PubMed ID: 19640545
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete temperature profiles in ultra-high-pressure liquid chromatography columns.
    Gritti F; Guiochon G
    Anal Chem; 2008 Jul; 80(13):5009-20. PubMed ID: 18529067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of thermal processes in very high pressure liquid chromatography for column immersed in a water bath: Application of the selected models.
    Kostka J; Gritti F; Guiochon G; Kaczmarski K
    J Chromatogr A; 2010 Jul; 1217(28):4704-12. PubMed ID: 20627254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic performance limits of constant pressure versus constant flow rate gradient elution separations. Part I: theory.
    Broeckhoven K; Verstraeten M; Choikhet K; Dittmann M; Witt K; Desmet G
    J Chromatogr A; 2011 Feb; 1218(8):1153-69. PubMed ID: 21256492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1mm I.D. columns.
    de Villiers A; Lauer H; Szucs R; Goodall S; Sandra P
    J Chromatogr A; 2006 Apr; 1113(1-2):84-91. PubMed ID: 16476437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injection profiles in liquid chromatography. I. A fundamental investigation.
    Samuelsson J; Edström L; Forssén P; Fornstedt T
    J Chromatogr A; 2010 Jun; 1217(26):4306-12. PubMed ID: 20483420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards porous polymer monoliths for the efficient, retention-independent performance in the isocratic separation of small molecules by means of nano-liquid chromatography.
    Nischang I; Teasdale I; Brüggemann O
    J Chromatogr A; 2010 Nov; 1217(48):7514-22. PubMed ID: 20980011
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High efficiency liquid chromatography on conventional columns and instrumentation by using temperature as a variable. Kinetic plots and experimental verification.
    Lestremau F; de Villiers A; Lynen F; Cooper A; Szucs R; Sandra P
    J Chromatogr A; 2007 Jan; 1138(1-2):120-31. PubMed ID: 17097097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of column inner diameter on chromatographic performance in temperature gradient liquid chromatography.
    Molander P; Olsen R; Lundanes E; Greibrokk T
    Analyst; 2003 Nov; 128(11):1341-5. PubMed ID: 14700227
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of methacrylate monolithic columns in reversed-phase liquid chromatographic separations.
    Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2007 Dec; 1175(1):81-8. PubMed ID: 18001748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical assessment of frictional heating effects and thermostat design on the performance of conventional (3 microm and 5 microm) columns in reversed-phase high-performance liquid chromatography.
    Fallas MM; Hadley MR; McCalley DV
    J Chromatogr A; 2009 May; 1216(18):3961-9. PubMed ID: 19339017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Consequences of the radial heterogeneity of the column temperature at high mobile phase velocity.
    Gritti F; Guiochon G
    J Chromatogr A; 2007 Sep; 1166(1-2):47-60. PubMed ID: 17720174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.