These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 21377965)

  • 1. [Research strategies for the next step of genome-wide association study].
    Quan C; Zhang XJ
    Yi Chuan; 2011 Feb; 33(2):100-8. PubMed ID: 21377965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Fine mapping of complex disease susceptibility loci].
    Song Q; Zhang H; Ma Y; Zhou G
    Yi Chuan; 2014 Jan; 36(1):2-10. PubMed ID: 24846913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence.
    Lin C; Chu CM; Su SL
    PLoS One; 2016; 11(4):e0152891. PubMed ID: 27045371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alcohol Dependence Genetics: Lessons Learned From Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses.
    Hart AB; Kranzler HR
    Alcohol Clin Exp Res; 2015 Aug; 39(8):1312-27. PubMed ID: 26110981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeted resequencing of GWAS loci reveals novel genetic variants for milk production traits.
    Jiang L; Liu X; Yang J; Wang H; Jiang J; Liu L; He S; Ding X; Liu J; Zhang Q
    BMC Genomics; 2014 Dec; 15(1):1105. PubMed ID: 25510969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritizing GWAS results: A review of statistical methods and recommendations for their application.
    Cantor RM; Lange K; Sinsheimer JS
    Am J Hum Genet; 2010 Jan; 86(1):6-22. PubMed ID: 20074509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Genomewide association study: advances, challenges and deliberation].
    Tu X; Shi LS; Wang F; Wang Q
    Sheng Li Ke Xue Jin Zhan; 2010 Apr; 41(2):87-94. PubMed ID: 21416992
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics of complex traits in psychiatry.
    Gelernter J
    Biol Psychiatry; 2015 Jan; 77(1):36-42. PubMed ID: 25444161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multigenic modeling of complex disease by random forests.
    Sun YV
    Adv Genet; 2010; 72():73-99. PubMed ID: 21029849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Genome-Wide Association Data.
    McRae AF
    Methods Mol Biol; 2017; 1526():161-173. PubMed ID: 27896741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Testing gene-gene interactions in genome wide association studies.
    Hu JK; Wang X; Wang P
    Genet Epidemiol; 2014 Feb; 38(2):123-34. PubMed ID: 24431225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. BiForce Toolbox: powerful high-throughput computational analysis of gene-gene interactions in genome-wide association studies.
    Gyenesei A; Moody J; Laiho A; Semple CA; Haley CS; Wei WH
    Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W628-32. PubMed ID: 22689639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of multi-trait associations using pathway-based analysis of GWAS summary statistics.
    Pei G; Sun H; Dai Y; Liu X; Zhao Z; Jia P
    BMC Genomics; 2019 Feb; 20(Suppl 1):79. PubMed ID: 30712509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Current status of SNPs interaction in genome-wide association study].
    Li FG; Wang ZP; Hu G; Li H
    Yi Chuan; 2011 Sep; 33(9):901-10. PubMed ID: 21951789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probabilistic natural mapping of gene-level tests for genome-wide association studies.
    Bao F; Deng Y; Du M; Ren Z; Zhang Q; Zhao Y; Suo J; Zhang Z; Wang M; Dai Q
    Brief Bioinform; 2018 Jul; 19(4):545-553. PubMed ID: 28200018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An association study using imputed whole-genome sequence data identifies novel significant loci for growth-related traits in a Duroc × Erhualian F
    Ji J; Yan G; Chen D; Xiao S; Gao J; Zhang Z
    J Anim Breed Genet; 2019 May; 136(3):217-228. PubMed ID: 30869175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-analysis in genome-wide association datasets: strategies and application in Parkinson disease.
    Evangelou E; Maraganore DM; Ioannidis JP
    PLoS One; 2007 Feb; 2(2):e196. PubMed ID: 17332845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Bayesian model for detection of high-order interactions among genetic variants in genome-wide association studies.
    Wang J; Joshi T; Valliyodan B; Shi H; Liang Y; Nguyen HT; Zhang J; Xu D
    BMC Genomics; 2015 Nov; 16():1011. PubMed ID: 26607428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The impact of imputation on meta-analysis of genome-wide association studies.
    Li J; Guo YF; Pei Y; Deng HW
    PLoS One; 2012; 7(4):e34486. PubMed ID: 22496814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.