These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 21378121)

  • 1. Segrosome assembly at the pliable parH centromere.
    Wu M; Zampini M; Bussiek M; Hoischen C; Diekmann S; Hayes F
    Nucleic Acids Res; 2011 Jul; 39(12):5082-97. PubMed ID: 21378121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recruitment of the ParG segregation protein to different affinity DNA sites.
    Zampini M; Derome A; Bailey SE; Barillà D; Hayes F
    J Bacteriol; 2009 Jun; 191(12):3832-41. PubMed ID: 19376860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promiscuous stimulation of ParF protein polymerization by heterogeneous centromere binding factors.
    Machón C; Fothergill TJ; Barillà D; Hayes F
    J Mol Biol; 2007 Nov; 374(1):1-8. PubMed ID: 17920627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome Segregation by the Venus Flytrap Mechanism: Probing the Interaction Between the ParF ATPase and the ParG Centromere Binding Protein.
    Caccamo M; Dobruk-Serkowska A; Rodríguez-Castañeda F; Pennica C; Barillà D; Hayes F
    Front Mol Biosci; 2020; 7():108. PubMed ID: 32613008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ParG, a protein required for active partition of bacterial plasmids, has a dimeric ribbon-helix-helix structure.
    Golovanov AP; Barillà D; Golovanova M; Hayes F; Lian LY
    Mol Microbiol; 2003 Nov; 50(4):1141-53. PubMed ID: 14622405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural mechanism of ATP-induced polymerization of the partition factor ParF: implications for DNA segregation.
    Schumacher MA; Ye Q; Barge MT; Zampini M; Barillà D; Hayes F
    J Biol Chem; 2012 Jul; 287(31):26146-54. PubMed ID: 22674577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Architecture of the ParF*ParG protein complex involved in prokaryotic DNA segregation.
    Barillà D; Hayes F
    Mol Microbiol; 2003 Jul; 49(2):487-99. PubMed ID: 12828644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segrosome structure revealed by a complex of ParR with centromere DNA.
    Schumacher MA; Glover TC; Brzoska AJ; Jensen SO; Dunham TD; Skurray RA; Firth N
    Nature; 2007 Dec; 450(7173):1268-71. PubMed ID: 18097417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein diversity confers specificity in plasmid segregation.
    Fothergill TJ; Barillà D; Hayes F
    J Bacteriol; 2005 Apr; 187(8):2651-61. PubMed ID: 15805511
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The tail of the ParG DNA segregation protein remodels ParF polymers and enhances ATP hydrolysis via an arginine finger-like motif.
    Barillà D; Carmelo E; Hayes F
    Proc Natl Acad Sci U S A; 2007 Feb; 104(6):1811-6. PubMed ID: 17261809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The unstructured N-terminal tail of ParG modulates assembly of a quaternary nucleoprotein complex in transcription repression.
    Carmelo E; Barillà D; Golovanov AP; Lian LY; Derome A; Hayes F
    J Biol Chem; 2005 Aug; 280(31):28683-91. PubMed ID: 15951570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure and centromere binding of the plasmid segregation protein ParB from pCXC100.
    Huang L; Yin P; Zhu X; Zhang Y; Ye K
    Nucleic Acids Res; 2011 Apr; 39(7):2954-68. PubMed ID: 21123191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The TubR-centromere complex adopts a double-ring segrosome structure in Type III partition systems.
    Martín-García B; Martín-González A; Carrasco C; Hernández-Arriaga AM; Ruíz-Quero R; Díaz-Orejas R; Aicart-Ramos C; Moreno-Herrero F; Oliva MA
    Nucleic Acids Res; 2018 Jun; 46(11):5704-5716. PubMed ID: 29762781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural biology of plasmid partition: uncovering the molecular mechanisms of DNA segregation.
    Schumacher MA
    Biochem J; 2008 May; 412(1):1-18. PubMed ID: 18426389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breaking and restoring the hydrophobic core of a centromere-binding protein.
    Saeed S; Jowitt TA; Warwicker J; Hayes F
    J Biol Chem; 2015 Apr; 290(14):9273-83. PubMed ID: 25713077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural biology of plasmid segregation proteins.
    Schumacher MA
    Curr Opin Struct Biol; 2007 Feb; 17(1):103-9. PubMed ID: 17161598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative DNA Binding of the Plasmid Partitioning Protein TubR from the Bacillus cereus pXO1 Plasmid.
    Hayashi I; Oda T; Sato M; Fuchigami S
    J Mol Biol; 2018 Dec; 430(24):5015-5028. PubMed ID: 30414406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of a four-way bridged ParB-DNA complex provides insight into P1 segrosome assembly.
    Schumacher MA; Mansoor A; Funnell BE
    J Biol Chem; 2007 Apr; 282(14):10456-64. PubMed ID: 17293348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The C-terminal region of the plasmid partitioning protein TubY is a tetramer that can bind membranes and DNA.
    Hayashi I
    J Biol Chem; 2020 Dec; 295(51):17770-17780. PubMed ID: 33454013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uncoupling of nucleotide hydrolysis and polymerization in the ParA protein superfamily disrupts DNA segregation dynamics.
    Dobruk-Serkowska A; Caccamo M; Rodríguez-Castañeda F; Wu M; Bryce K; Ng I; Schumacher MA; Barillà D; Hayes F
    J Biol Chem; 2012 Dec; 287(51):42545-53. PubMed ID: 23093445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.