BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 2137837)

  • 1. Analysis, synthesis, and perception of voice quality variations among female and male talkers.
    Klatt DH; Klatt LC
    J Acoust Soc Am; 1990 Feb; 87(2):820-57. PubMed ID: 2137837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Speech synthesis by glottal excited linear prediction.
    Childers DG; Hu HT
    J Acoust Soc Am; 1994 Oct; 96(4):2026-36. PubMed ID: 7963019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some difference limens for the perception of breathiness.
    Shrivastav R; Sapienza CM
    J Acoust Soc Am; 2006 Jul; 120(1):416-23. PubMed ID: 16875237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acoustic-perceptual correlates of voice quality in elderly men and women.
    Gorham-Rowan MM; Laures-Gore J
    J Commun Disord; 2006; 39(3):171-84. PubMed ID: 16360669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Categorization in the Perception of Breathy Voice Quality and Its Relation to Voice Production in Healthy Speakers.
    Park Y; Perkell JS; Matthies ML; Stepp CE
    J Speech Lang Hear Res; 2019 Oct; 62(10):3655-3666. PubMed ID: 31525305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age, sex, and vowel dependencies of acoustic measures related to the voice source.
    Iseli M; Shue YL; Alwan A
    J Acoust Soc Am; 2007 Apr; 121(4):2283-95. PubMed ID: 17471742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vocal quality factors: analysis, synthesis, and perception.
    Childers DG; Lee CK
    J Acoust Soc Am; 1991 Nov; 90(5):2394-410. PubMed ID: 1837797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perception of synthesized voice quality in connected speech by Cantonese speakers.
    Yiu EM; Murdoch B; Hird K; Lau P
    J Acoust Soc Am; 2002 Sep; 112(3 Pt 1):1091-101. PubMed ID: 12243157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ventricular fold vibration in voice production: a high-speed imaging study with kymographic, acoustic and perceptual analyses of a voice patient and a vocally healthy subject.
    Lindestad PA; Blixt V; Pahlberg-Olsson J; Hammarberg B
    Logoped Phoniatr Vocol; 2004; 29(4):162-70. PubMed ID: 15764210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acoustic correlates of breathy vocal quality: dysphonic voices and continuous speech.
    Hillenbrand J; Houde RA
    J Speech Hear Res; 1996 Apr; 39(2):311-21. PubMed ID: 8729919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of post-loading rest on acoustic parameters with special reference to gender and ergonomic factors.
    Vintturi J; Alku P; Lauri ER; Sala E; Sihvo M; Vilkman E
    Folia Phoniatr Logop; 2001; 53(6):338-50. PubMed ID: 11721140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the anatomical encoding of voice with a mathematical model of the vocal system.
    Assaneo MF; Sitt J; Varoquaux G; Sigman M; Cohen L; Trevisan MA
    Neuroimage; 2016 Nov; 141():31-39. PubMed ID: 27436593
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of temporal encodings of voicing, voicelessness, fundamental frequency, and amplitude variation to audio-visual and auditory speech perception.
    Faulkner A; Rosen S
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2063-73. PubMed ID: 10530029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Source and filter adjustments affecting the perception of the vocal qualities twang and yawn.
    Titze IR; Bergan CC; Hunter EJ; Story B
    Logoped Phoniatr Vocol; 2003; 28(4):147-55. PubMed ID: 14686543
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise and tremor in the perception of vocal aging in males.
    Harnsberger JD; Brown WS; Shrivastav R; Rothman H
    J Voice; 2010 Sep; 24(5):523-30. PubMed ID: 19815378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intra-oral pressure-based voicing control of electrolaryngeal speech with intra-oral vibrator.
    Takahashi H; Nakao M; Kikuchi Y; Kaga K
    J Voice; 2008 Jul; 22(4):420-9. PubMed ID: 17572066
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of cepstral analysis for differentiating dysphonic from normal voices in children.
    Esen Aydinli F; Özcebe E; İncebay Ö
    Int J Pediatr Otorhinolaryngol; 2019 Jan; 116():107-113. PubMed ID: 30554679
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of glottal voice source quantification parameters in breathy, normal and pressed phonation of female and male speakers.
    Alku P; Vilkman E
    Folia Phoniatr Logop; 1996; 48(5):240-54. PubMed ID: 8828282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistency of voice frequency and perturbation measures in children using cepstral analyses: a movement toward increased recording stability.
    Diercks GR; Ojha S; Infusino S; Maurer R; Hartnick CJ
    JAMA Otolaryngol Head Neck Surg; 2013 Aug; 139(8):811-6. PubMed ID: 23949356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Discriminant capacity of acoustic, perceptual, and vocal self: the effects of vocal demands.
    Côrtes Gama AC; Camargo Z; Rocha Santos MA; Carlos Rusilo L
    J Voice; 2015 Mar; 29(2):260.e45-50. PubMed ID: 25499524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.