These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 21378897)
1. Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage. Suenaga K; Sato Y; Liu Z; Kataura H; Okazaki T; Kimoto K; Sawada H; Sasaki T; Omoto K; Tomita T; Kaneyama T; Kondo Y Nat Chem; 2009 Aug; 1(5):415-8. PubMed ID: 21378897 [TBL] [Abstract][Full Text] [Related]
2. Atomic imaging and spectroscopy of low-dimensional materials with interrupted periodicities. Suenaga K; Akiyama-Hasegawa K; Niimi Y; Kobayashi H; Nakamura M; Liu Z; Sato Y; Koshino M; Iijima S J Electron Microsc (Tokyo); 2012; 61(5):285-91. PubMed ID: 22811432 [TBL] [Abstract][Full Text] [Related]
3. Capturing the signature of single atoms with the tiny probe of a STEM. Colliex C; Gloter A; March K; Mory C; Stéphan O; Suenaga K; Tencé M Ultramicroscopy; 2012 Dec; 123():80-9. PubMed ID: 22626784 [TBL] [Abstract][Full Text] [Related]
4. Positional control of encapsulated atoms inside a fullerene cage by exohedral addition. Yamada M; Nakahodo T; Wakahara T; Tsuchiya T; Maeda Y; Akasaka T; Kako M; Yoza K; Horn E; Mizorogi N; Kobayashi K; Nagase S J Am Chem Soc; 2005 Oct; 127(42):14570-1. PubMed ID: 16231899 [TBL] [Abstract][Full Text] [Related]
5. Electron energy-loss spectroscopy as a tool for elemental analysis in biological specimens. Kapp N; Studer D; Gehr P; Geiser M Methods Mol Biol; 2007; 369():431-47. PubMed ID: 17656763 [TBL] [Abstract][Full Text] [Related]
6. Current progress on the chemical functionalization and supramolecular chemistry of M@C82. Maeda Y; Tsuchiya T; Lu X; Takano Y; Akasaka T; Nagase S Nanoscale; 2011 Jun; 3(6):2421-9. PubMed ID: 21483901 [TBL] [Abstract][Full Text] [Related]
7. Numerical simulation of Electron Energy Loss Spectroscopy using a Generalized Multipole Technique. Kiewidt L; Karamehmedović M; Matyssek C; Hergert W; Mädler L; Wriedt T Ultramicroscopy; 2013 Oct; 133():101-8. PubMed ID: 23969065 [TBL] [Abstract][Full Text] [Related]
8. From electron energy-loss spectroscopy to multi-dimensional and multi-signal electron microscopy. Colliex C J Electron Microsc (Tokyo); 2011; 60 Suppl 1():S161-71. PubMed ID: 21844587 [TBL] [Abstract][Full Text] [Related]
9. Comparison of the electronic structure of a thermoelectric skutterudite before and after adding rattlers: an electron energy loss study. Prytz O; Saeterli R; Løvvik OM; Taftø J Micron; 2008 Aug; 39(6):685-9. PubMed ID: 18042390 [TBL] [Abstract][Full Text] [Related]
10. High-energy resolution electron energy-loss spectroscopy study of interband transitions characteristic to single-walled carbon nanotubes. Sato Y; Terauchi M Microsc Microanal; 2014 Jun; 20(3):807-14. PubMed ID: 24685359 [TBL] [Abstract][Full Text] [Related]
11. In situ EELS study of dehydration of Al(OH)₃ by electron beam irradiation. Jiang N; Spence JC Ultramicroscopy; 2011 Jun; 111(7):860-4. PubMed ID: 21146933 [TBL] [Abstract][Full Text] [Related]
12. Hiding and recovering electrons in a dimetallic endohedral fullerene: air-stable products from radical additions. Yamada M; Kurihara H; Suzuki M; Saito M; Slanina Z; Uhlik F; Aizawa T; Kato T; Olmstead MM; Balch AL; Maeda Y; Nagase S; Lu X; Akasaka T J Am Chem Soc; 2015 Jan; 137(1):232-8. PubMed ID: 25494409 [TBL] [Abstract][Full Text] [Related]
13. Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy. Shah AB; Ramasse QM; Wen JG; Bhattacharya A; Zuo JM Micron; 2011 Aug; 42(6):539-46. PubMed ID: 21376607 [TBL] [Abstract][Full Text] [Related]
14. Electron energy-loss safe-dose limits for manganese valence measurements in environmentally relevant manganese oxides. Livi KJ; Lafferty B; Zhu M; Zhang S; Gaillot AC; Sparks DL Environ Sci Technol; 2012 Jan; 46(2):970-6. PubMed ID: 22148625 [TBL] [Abstract][Full Text] [Related]
15. High-resolution electron spectroscopy of lanthanide (Ce, Pr, and Nd) complexes of cyclooctatetraene: the role of 4f electrons. Kumari S; Roudjane M; Hewage D; Liu Y; Yang DS J Chem Phys; 2013 Apr; 138(16):164307. PubMed ID: 23635138 [TBL] [Abstract][Full Text] [Related]
16. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes. Susi T; Kotakoski J; Arenal R; Kurasch S; Jiang H; Skakalova V; Stephan O; Krasheninnikov AV; Kauppinen EI; Kaiser U; Meyer JC ACS Nano; 2012 Oct; 6(10):8837-46. PubMed ID: 23009666 [TBL] [Abstract][Full Text] [Related]
17. Development of electron energy-loss spectroscopy for nanoscience. Yuan J; Wang Z; Fu X; Xie L; Sun Y; Gao S; Jiang J; Hu X; Xu C Micron; 2008 Aug; 39(6):658-65. PubMed ID: 18166483 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical and magnetic properties of a surface-grafted novel endohedral metallofullerene derivative. Crivillers N; Takano Y; Matsumoto Y; Casado-Montenegro J; Mas-Torrent M; Rovira C; Akasaka T; Veciana J Chem Commun (Camb); 2013 Sep; 49(74):8145-7. PubMed ID: 23868675 [TBL] [Abstract][Full Text] [Related]
19. Thermal/electron irradiation assisted coalescence of Sc3N@C80 fullerene in carbon nanotube and evidence of charge transfer between pristine/coalesced fullerenes and nanotubes. Fallah A; Yonetani Y; Senga R; Hirahara K; Kitaura R; Shinohara H; Nakayama Y Nanoscale; 2013 Dec; 5(23):11755-60. PubMed ID: 24121541 [TBL] [Abstract][Full Text] [Related]
20. Electron density distribution in endohedral complexes of fullerene C₆₀, calculated based on the Gauss law. Sadlej-Sosnowska N; Mazurek AP J Chem Inf Model; 2012 May; 52(5):1193-8. PubMed ID: 22540662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]