These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 21379393)

  • 1. FEM Simulation of Non-Progressive Growth from Asymmetric Loading and Vicious Cycle Theory: Scoliosis Study Proof of Concept.
    Fok J; Adeeb S; Carey J
    Open Biomed Eng J; 2010 Aug; 4():162-9. PubMed ID: 21379393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical spinal growth modulation and progressive adolescent scoliosis--a test of the 'vicious cycle' pathogenetic hypothesis: summary of an electronic focus group debate of the IBSE.
    Stokes IA; Burwell RG; Dangerfield PH;
    Scoliosis; 2006 Oct; 1():16. PubMed ID: 17049077
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
    Villemure I; Aubin CE; Dansereau J; Labelle H
    J Biomech Eng; 2002 Dec; 124(6):784-90. PubMed ID: 12596648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite element comparison of different growth sparring instrumentation systems for the early treatment of idiopathic scoliosis.
    Driscoll M; Aubin CE; Moreau A; Parent S
    Stud Health Technol Inform; 2010; 158():89-94. PubMed ID: 20543406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical modulation of spinal growth and progression of adolescent scoliosis.
    Stokes IA
    Stud Health Technol Inform; 2008; 135():75-83. PubMed ID: 18401082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A stability-based model of a growing spine with adolescent idiopathic scoliosis: A combination of musculoskeletal and finite element approaches.
    Kamal Z; Rouhi G; Arjmand N; Adeeb S
    Med Eng Phys; 2019 Feb; 64():46-55. PubMed ID: 30638786
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surgical Planning and Follow-up of Anterior Vertebral Body Growth Modulation in Pediatric Idiopathic Scoliosis Using a Patient-Specific Finite Element Model Integrating Growth Modulation.
    Cobetto N; Aubin CE; Parent S
    Spine Deform; 2018; 6(4):344-350. PubMed ID: 29886903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Development of the personalized finite element model of the adolescent idiopathic scoliosis and its significance].
    Wang Z; Liu Z; Wang Z; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):1084-8. PubMed ID: 19024451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distraction magnitude and frequency affects the outcome in juvenile idiopathic patients with growth rods: finite element study using a representative scoliotic spine model.
    Agarwal A; Zakeri A; Agarwal AK; Jayaswal A; Goel VK
    Spine J; 2015 Aug; 15(8):1848-55. PubMed ID: 25862502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new method to include the gravitational forces in a finite element model of the scoliotic spine.
    Clin J; Aubin CÉ; Lalonde N; Parent S; Labelle H
    Med Biol Eng Comput; 2011 Aug; 49(8):967-77. PubMed ID: 21728065
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Low Bone Mineral Status on Biomechanical Characteristics in Idiopathic Scoliotic Spinal Deformity.
    Song XX; Jin LY; Li XF; Qian L; Shen HX; Liu ZD; Yu BW
    World Neurosurg; 2018 Feb; 110():e321-e329. PubMed ID: 29133001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical simulation and analysis of scoliosis correction using a fusionless intravertebral epiphyseal device.
    Clin J; Aubin CÉ; Parent S
    Spine (Phila Pa 1976); 2015 Mar; 40(6):369-76. PubMed ID: 25584943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scoliosis study using finite element models.
    Aubin CE
    Stud Health Technol Inform; 2002; 91():309-13. PubMed ID: 15457744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Asymmetric Tension on Biomechanics and Metabolism of Vertebral Epiphyseal Plate in a Rodent Model of Scoliosis.
    Li QY; Zhong GB; Liu ZD; Lao LF
    Orthop Surg; 2017 Aug; 9(3):311-318. PubMed ID: 28960815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stress distribution changes in growth plates of a trunk with adolescent idiopathic scoliosis following unilateral muscle paralysis: A hybrid musculoskeletal and finite element model.
    Kamal Z; Rouhi G
    J Biomech; 2020 Oct; 111():109997. PubMed ID: 32866916
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads.
    Clin J; Aubin CÉ; Parent S; Labelle H
    Med Biol Eng Comput; 2011 Jul; 49(7):743-53. PubMed ID: 21287287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Finite element analysis of the scoliotic spine under different loading conditions.
    Cheng FH; Shih SL; Chou WK; Liu CL; Sung WH; Chen CS
    Biomed Mater Eng; 2010; 20(5):251-9. PubMed ID: 21084737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finite element simulation of a scoliotic spine with periodic adjustments of an attached growing rod.
    Abolaeha OA; Weber J; Ross LT
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5781-5. PubMed ID: 23367243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical Assessment of Providence Nighttime Brace for the Treatment of Adolescent Idiopathic Scoliosis.
    Sattout A; Clin J; Cobetto N; Labelle H; Aubin CE
    Spine Deform; 2016 Jul; 4(4):253-260. PubMed ID: 27927513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Porcine spine finite element model: a complementary tool to experimental scoliosis fusionless instrumentation.
    Hachem B; Aubin CE; Parent S
    Eur Spine J; 2017 Jun; 26(6):1610-1617. PubMed ID: 28070685
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.