BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 21380517)

  • 21. Development of a high-throughput method to evaluate the impact of inhibitory compounds from lignocellulosic hydrolysates on the growth of Zymomonas mobilis.
    Franden MA; Pienkos PT; Zhang M
    J Biotechnol; 2009 Dec; 144(4):259-67. PubMed ID: 19683550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds.
    Liu ZL
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5369-5390. PubMed ID: 29725719
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanism of Tolerance to the Lignin-Derived Inhibitor
    Yan Z; Gao X; Gao Q; Bao J
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31492664
    [No Abstract]   [Full Text] [Related]  

  • 24. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain.
    Katahira S; Mizuike A; Fukuda H; Kondo A
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1136-43. PubMed ID: 16575564
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae.
    Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S
    Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Construction of a xylose-metabolizing yeast by genome integration of xylose isomerase gene and investigation of the effect of xylitol on fermentation.
    Tanino T; Hotta A; Ito T; Ishii J; Yamada R; Hasunuma T; Ogino C; Ohmura N; Ohshima T; Kondo A
    Appl Microbiol Biotechnol; 2010 Nov; 88(5):1215-21. PubMed ID: 20853104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial responses to solvent and alcohol stress.
    Taylor M; Tuffin M; Burton S; Eley K; Cowan D
    Biotechnol J; 2008 Nov; 3(11):1388-97. PubMed ID: 18956369
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of yeast stress tolerance and its manipulation for efficient fuel ethanol production.
    Zhao XQ; Bai FW
    J Biotechnol; 2009 Oct; 144(1):23-30. PubMed ID: 19446584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents.
    Alriksson B; Cavka A; Jönsson LJ
    Bioresour Technol; 2011 Jan; 102(2):1254-63. PubMed ID: 20822900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Progress in detoxification of inhibitors generated during lignocellulose pretreatment].
    Yang L; Tan L; Liu T
    Sheng Wu Gong Cheng Xue Bao; 2021 Jan; 37(1):15-29. PubMed ID: 33501786
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Strain construction for ethanol production from dilute-acid lignocellulosic hydrolysate.
    Yan F; Bai F; Tian S; Zhang J; Zhang Z; Yang X
    Appl Biochem Biotechnol; 2009 Jun; 157(3):473-82. PubMed ID: 18751961
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification.
    Tian S; Luo XL; Yang XS; Zhu JY
    Bioresour Technol; 2010 Nov; 101(22):8678-85. PubMed ID: 20620049
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bermuda grass as feedstock for biofuel production: a review.
    Xu J; Wang Z; Cheng JJ
    Bioresour Technol; 2011 Sep; 102(17):7613-20. PubMed ID: 21683586
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds.
    Chen X; Li Z; Zhang X; Hu F; Ryu DD; Bao J
    Appl Biochem Biotechnol; 2009 Dec; 159(3):591-604. PubMed ID: 19156369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate.
    Modig T; Almeida JR; Gorwa-Grauslund MF; Lidén G
    Biotechnol Bioeng; 2008 Jun; 100(3):423-9. PubMed ID: 18438882
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative transcription dynamic analysis reveals candidate genes and key regulators for ethanol tolerance in Saccharomyces cerevisiae.
    Ma M; Liu LZ
    BMC Microbiol; 2010 Jun; 10():169. PubMed ID: 20537179
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cellodextrin transport in yeast for improved biofuel production.
    Galazka JM; Tian C; Beeson WT; Martinez B; Glass NL; Cate JH
    Science; 2010 Oct; 330(6000):84-6. PubMed ID: 20829451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tolerance and adaptation of ethanologenic yeasts to lignocellulosic inhibitory compounds.
    Keating JD; Panganiban C; Mansfield SD
    Biotechnol Bioeng; 2006 Apr; 93(6):1196-206. PubMed ID: 16470880
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein expression analysis revealed a fine-tuned mechanism of in situ detoxification pathway for the tolerant industrial yeast Saccharomyces cerevisiae.
    Liu ZL; Huang X; Zhou Q; Xu J
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5781-5796. PubMed ID: 31139900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of a yeast strain for xylitol production without hydrolysate detoxification as part of the integration of co-product generation within the lignocellulosic ethanol process.
    Huang CF; Jiang YF; Guo GL; Hwang WS
    Bioresour Technol; 2011 Feb; 102(3):3322-9. PubMed ID: 21095119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.