BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 21380517)

  • 41. Transcriptome analysis of Zymomonas mobilis ZM4 reveals mechanisms of tolerance and detoxification of phenolic aldehyde inhibitors from lignocellulose pretreatment.
    Yi X; Gu H; Gao Q; Liu ZL; Bao J
    Biotechnol Biofuels; 2015; 8():153. PubMed ID: 26396591
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome sequence of the lignocellulose-bioconverting and xylose-fermenting yeast Pichia stipitis.
    Jeffries TW; Grigoriev IV; Grimwood J; Laplaza JM; Aerts A; Salamov A; Schmutz J; Lindquist E; Dehal P; Shapiro H; Jin YS; Passoth V; Richardson PM
    Nat Biotechnol; 2007 Mar; 25(3):319-26. PubMed ID: 17334359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Yeast expression platforms.
    Böer E; Steinborn G; Kunze G; Gellissen G
    Appl Microbiol Biotechnol; 2007 Dec; 77(3):513-23. PubMed ID: 17924105
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains.
    Jeppsson M; Johansson B; Jensen PR; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2003 Nov; 20(15):1263-72. PubMed ID: 14618564
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production.
    Doran-Peterson J; Jangid A; Brandon SK; DeCrescenzo-Henriksen E; Dien B; Ingram LO
    Methods Mol Biol; 2009; 581():263-80. PubMed ID: 19768628
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fungal pretreatment of lignocellulose by Phanerochaete chrysosporium to produce ethanol from rice straw.
    Bak JS; Ko JK; Choi IG; Park YC; Seo JH; Kim KH
    Biotechnol Bioeng; 2009 Oct; 104(3):471-82. PubMed ID: 19591194
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Co-fermentation of cellobiose and xylose using beta-glucosidase displaying diploid industrial yeast strain OC-2.
    Saitoh S; Hasunuma T; Tanaka T; Kondo A
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1975-82. PubMed ID: 20552354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Metabolic engineering of the initial stages of xylose catabolism in yeasts for construction of efficient producers of ethanol from lignocelluloses].
    Dmytruk OV; Dmytruk KV; Voronovs'kyĭ AIa; Sybirnyĭ AA
    Tsitol Genet; 2008; 42(2):70-84. PubMed ID: 18630124
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW; Dien BS; Nichols NN; Slininger PJ; Liu ZL; Skory CD
    Appl Microbiol Biotechnol; 2006 Jul; 71(3):339-49. PubMed ID: 16222531
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expression and regulation of genes encoding lignocellulose-degrading activity in the genus Phanerochaete.
    MacDonald J; Suzuki H; Master ER
    Appl Microbiol Biotechnol; 2012 Apr; 94(2):339-51. PubMed ID: 22391967
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport of carboxylic acids in yeasts.
    Casal M; Paiva S; Queirós O; Soares-Silva I
    FEMS Microbiol Rev; 2008 Nov; 32(6):974-94. PubMed ID: 18759742
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fermentation performance of engineered and evolved xylose-fermenting Saccharomyces cerevisiae strains.
    Sonderegger M; Jeppsson M; Larsson C; Gorwa-Grauslund MF; Boles E; Olsson L; Spencer-Martins I; Hahn-Hägerdal B; Sauer U
    Biotechnol Bioeng; 2004 Jul; 87(1):90-8. PubMed ID: 15211492
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis.
    Huang CF; Lin TH; Guo GL; Hwang WS
    Bioresour Technol; 2009 Sep; 100(17):3914-20. PubMed ID: 19349164
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New improvements for lignocellulosic ethanol.
    Margeot A; Hahn-Hagerdal B; Edlund M; Slade R; Monot F
    Curr Opin Biotechnol; 2009 Jun; 20(3):372-80. PubMed ID: 19502048
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds.
    Ibraheem O; Ndimba BK
    Int J Biol Sci; 2013; 9(6):598-612. PubMed ID: 23847442
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Liquid-liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate.
    Zautsen RR; Maugeri-Filho F; Vaz-Rossell CE; Straathof AJ; van der Wielen LA; de Bont JA
    Biotechnol Bioeng; 2009 Apr; 102(5):1354-60. PubMed ID: 19062184
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Towards industrial pentose-fermenting yeast strains.
    Hahn-Hägerdal B; Karhumaa K; Fonseca C; Spencer-Martins I; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Apr; 74(5):937-53. PubMed ID: 17294186
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Hybrid process for ethanol production from rice straw.
    Chadha BS; Kanwar SS; Saini HS; Garcha HS
    Acta Microbiol Immunol Hung; 1995; 42(1):53-9. PubMed ID: 7620813
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast?
    Abdel-Banat BM; Hoshida H; Ano A; Nonklang S; Akada R
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):861-7. PubMed ID: 19820925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.