BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 21380530)

  • 1. Life-history consequences of adaptation to pollution. "Daphnia longispina clones historically exposed to copper".
    Agra AR; Soares AM; Barata C
    Ecotoxicology; 2011 May; 20(3):552-62. PubMed ID: 21380530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic costs of tolerance to metals in Daphnia longispina populations historically exposed to a copper mine drainage.
    Agra AR; Guilhermino L; Soares AM; Barata C
    Environ Toxicol Chem; 2010 Apr; 29(4):939-46. PubMed ID: 20821524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic determination of tolerance to lethal and sublethal copper concentrations in field populations of Daphnia longispina.
    Lopes I; Baird DJ; Ribeiro R
    Arch Environ Contam Toxicol; 2004 Jan; 46(1):43-51. PubMed ID: 15025163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of acid mine drainage on the genetic diversity and structure of a natural population of Daphnia longispina.
    Martins N; Bollinger C; Harper RM; Ribeiro R
    Aquat Toxicol; 2009 Apr; 92(2):104-12. PubMed ID: 19230987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic adaptation to metal stress by natural populations of Daphnia longispina.
    Lopes I; Baird DJ; Ribeiro R
    Ecotoxicol Environ Saf; 2006 Feb; 63(2):275-85. PubMed ID: 16677911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resistance to metal contamination by historically-stressed populations of Ceriodaphnia pulchella: environmental influence versus genetic determination.
    Lopes I; Baird DJ; Ribeiro R
    Chemosphere; 2005 Dec; 61(8):1189-97. PubMed ID: 16263389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing hypotheses on the resistance to metals by Daphnia longispina: differential acclimation, endpoints association, and fitness costs.
    Saro L; Lopes I; Martins N; Ribeiro R
    Environ Toxicol Chem; 2012 Apr; 31(4):909-15. PubMed ID: 22278886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of Copper and Zinc on survival, growth and reproduction of the cladoceran Daphnia longispina: introducing new data in an "old" issue.
    Martins C; Jesus FT; Nogueira AJA
    Ecotoxicology; 2017 Nov; 26(9):1157-1169. PubMed ID: 28828683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential resistance to copper and mine drainage in Daphnia longispina: relationship with allozyme genotypes.
    Martins N; Lopes I; Harper RM; Ross P; Ribeiro R
    Environ Toxicol Chem; 2007 Sep; 26(9):1904-9. PubMed ID: 17705644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variation in copper effects on kairomone-mediated responses in Daphnia pulicaria.
    DeMille CM; Arnott SE; Pyle GG
    Ecotoxicol Environ Saf; 2016 Apr; 126():264-272. PubMed ID: 26773836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation in transcriptional responses to copper exposure across Daphnia pulex lineages.
    Chain FJJ; Finlayson S; Crease T; Cristescu M
    Aquat Toxicol; 2019 May; 210():85-97. PubMed ID: 30836324
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are interactive effects of harmful algal blooms and copper pollution a concern for water quality management?
    Hochmuth JD; Asselman J; De Schamphelaere KAC
    Water Res; 2014 Sep; 60():41-53. PubMed ID: 24821194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tolerance to copper and to salinity in Daphnia longispina: implications within a climate change scenario.
    Leitão J; Ribeiro R; Soares AM; Lopes I
    PLoS One; 2013; 8(8):e68702. PubMed ID: 23990877
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytochrome B gene partial sequence and RAPD analysis of two Daphnia longispina lineages differing in their resistance to copper.
    Martins N; Lopes I; Brehm A; Ribeiro R
    Bull Environ Contam Toxicol; 2005 Apr; 74(4):755-60. PubMed ID: 16094891
    [No Abstract]   [Full Text] [Related]  

  • 15. Genetic erosion and population resilience in Daphnia longispina O.F. Müller under simulated predation and metal pressures.
    Lopes I; Martins N; Baird DJ; Ribeiro R
    Environ Toxicol Chem; 2009 Sep; 28(9):1912-9. PubMed ID: 19379016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acclimation of Daphnia magna to environmentally realistic copper concentrations.
    Bossuyt BT; Janssen CR
    Comp Biochem Physiol C Toxicol Pharmacol; 2003 Nov; 136(3):253-64. PubMed ID: 14659459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating additive versus interactive effects of copper and cadmium on Daphnia pulex life history.
    Sadeq SA; Beckerman AP
    Environ Sci Pollut Res Int; 2020 Jan; 27(2):2015-2026. PubMed ID: 31768955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Avoidance of copper contamination by field populations of Daphnia longispina.
    Lopes I; Baird DJ; Ribeiro R
    Environ Toxicol Chem; 2004 Jul; 23(7):1702-8. PubMed ID: 15230322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of copper contaminated food on the life cycle and secondary production of Daphnia laevis.
    Rocha GS; Tonietto AE; Lombardi AT; Melão Mda G
    Ecotoxicol Environ Saf; 2016 Nov; 133():235-42. PubMed ID: 27472028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison between two clones of Daphnia magna: effects of multigenerational cadmium exposure on toxicity, individual fitness, and biokinetics.
    Guan R; Wang WX
    Aquat Toxicol; 2006 Mar; 76(3-4):217-29. PubMed ID: 16289344
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.