BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21380846)

  • 1. Role of load history in intervertebral disc mechanics and intradiscal pressure generation.
    Hwang D; Gabai AS; Yu M; Yew AG; Hsieh AH
    Biomech Model Mechanobiol; 2012 Jan; 11(1-2):95-106. PubMed ID: 21380846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles.
    Goel VK; Kong W; Han JS; Weinstein JN; Gilbertson LG
    Spine (Phila Pa 1976); 1993 Sep; 18(11):1531-41. PubMed ID: 8235826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creep associated changes in intervertebral disc bulging obtained with a laser scanning device.
    Heuer F; Schmitt H; Schmidt H; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 Aug; 22(7):737-44. PubMed ID: 17561321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially varying material properties of the rat caudal intervertebral disc.
    Ho MM; Kelly TA; Guo XE; Ateshian GA; Hung CT
    Spine (Phila Pa 1976); 2006 Jul; 31(15):E486-93. PubMed ID: 16816748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study.
    Hsieh AH; Wagner DR; Cheng LY; Lotz JC
    J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disc mechanics with trans-endplate partial nucleotomy are not fully restored following cyclic compressive loading and unloaded recovery.
    Vresilovic EJ; Johannessen W; Elliott DM
    J Biomech Eng; 2006 Dec; 128(6):823-9. PubMed ID: 17154681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of creep on human lumbar intervertebral disk impact mechanics.
    Jamison D; Marcolongo MS
    J Biomech Eng; 2014 Mar; 136(3):031006. PubMed ID: 24292391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo porcine intradiscal pressure as a function of external loading.
    Ekström L; Holm S; Holm AK; Hansson T
    J Spinal Disord Tech; 2004 Aug; 17(4):312-6. PubMed ID: 15280761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of compressive loading properties of lumbar discs with a nucleus implant-a finite element analysis study.
    Strange DG; Fisher ST; Boughton PC; Kishen TJ; Diwan AD
    Spine J; 2010 Jul; 10(7):602-9. PubMed ID: 20547110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degenerative anular changes induced by puncture are associated with insufficiency of disc biomechanical function.
    Hsieh AH; Hwang D; Ryan DA; Freeman AK; Kim H
    Spine (Phila Pa 1976); 2009 May; 34(10):998-1005. PubMed ID: 19404174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmoviscoelastic finite element model of the intervertebral disc.
    Schroeder Y; Wilson W; Huyghe JM; Baaijens FP
    Eur Spine J; 2006 Aug; 15 Suppl 3(Suppl 3):S361-71. PubMed ID: 16724211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of experimental protocols on the mechanical properties of the intervertebral disc in unconfined compression.
    Recuerda M; Coté SP; Villemure I; Périé D
    J Biomech Eng; 2011 Jul; 133(7):071006. PubMed ID: 21823745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stress distribution in the intervertebral disc correlates with strength distribution in subdiscal trabecular bone in the porcine lumbar spine.
    Ryan G; Pandit A; Apatsidis D
    Clin Biomech (Bristol, Avon); 2008 Aug; 23(7):859-69. PubMed ID: 18423954
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleus pulposus cell response to confined and unconfined compression implicates mechanoregulation by fluid shear stress.
    Wang P; Yang L; Hsieh AH
    Ann Biomed Eng; 2011 Mar; 39(3):1101-11. PubMed ID: 21132369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ex vivo measurement of lumbar intervertebral disc pressure using fibre-Bragg gratings.
    Dennison CR; Wild PM; Byrnes PW; Saari A; Itshayek E; Wilson DC; Zhu QA; Dvorak MF; Cripton PA; Wilson DR
    J Biomech; 2008; 41(1):221-5. PubMed ID: 17761185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translational challenges for the development of a novel nucleus pulposus substitute: Experimental results from biomechanical and in vivo studies.
    Detiger SE; de Bakker JY; Emanuel KS; Schmitz M; Vergroesen PP; van der Veen AJ; Mazel C; Smit TH
    J Biomater Appl; 2016 Feb; 30(7):983-94. PubMed ID: 26494611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different effects of static versus cyclic compressive loading on rat intervertebral disc height and water loss in vitro.
    Masuoka K; Michalek AJ; MacLean JJ; Stokes IA; Iatridis JC
    Spine (Phila Pa 1976); 2007 Aug; 32(18):1974-9. PubMed ID: 17700443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The risk of disc prolapses with complex loading in different degrees of disc degeneration - a finite element analysis.
    Schmidt H; Kettler A; Rohlmann A; Claes L; Wilke HJ
    Clin Biomech (Bristol, Avon); 2007 Nov; 22(9):988-98. PubMed ID: 17822814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.