These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 21381123)

  • 1. Nanosphere lithography for the fabrication of ultranarrow graphene nanoribbons and on-chip bandgap tuning of graphene.
    Liu L; Zhang Y; Wang W; Gu C; Bai X; Wang E
    Adv Mater; 2011 Mar; 23(10):1246-51. PubMed ID: 21381123
    [No Abstract]   [Full Text] [Related]  

  • 2. Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap.
    Palacio I; Celis A; Nair MN; Gloter A; Zobelli A; Sicot M; Malterre D; Nevius MS; de Heer WA; Berger C; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2015 Jan; 15(1):182-9. PubMed ID: 25457853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells.
    Liu J; Kim GH; Xue Y; Kim JY; Baek JB; Durstock M; Dai L
    Adv Mater; 2014 Feb; 26(5):786-90. PubMed ID: 24167012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons.
    Chitara B; Panchakarla LS; Krupanidhi SB; Rao CN
    Adv Mater; 2011 Dec; 23(45):5419-24. PubMed ID: 21786342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unscrolling of multi-walled carbon nanotubes: towards micrometre-scale graphene oxide sheets.
    Wong CH; Pumera M
    Phys Chem Chem Phys; 2013 May; 15(20):7755-9. PubMed ID: 23598744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems.
    Huang YX; Liu XW; Xie JF; Sheng GP; Wang GY; Zhang YY; Xu AW; Yu HQ
    Chem Commun (Camb); 2011 May; 47(20):5795-7. PubMed ID: 21494723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraribbon heterojunction formation in ultranarrow graphene nanoribbons.
    Blankenburg S; Cai J; Ruffieux P; Jaafar R; Passerone D; Feng X; Müllen K; Fasel R; Pignedoli CA
    ACS Nano; 2012 Mar; 6(3):2020-5. PubMed ID: 22324827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical characterization, and relaxometry studies of micro-graphite oxide, graphene nanoplatelets, and nanoribbons.
    Paratala BS; Jacobson BD; Kanakia S; Francis LD; Sitharaman B
    PLoS One; 2012; 7(6):e38185. PubMed ID: 22685555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bottom-up route to enhance thermoelectric figures of merit in graphene nanoribbons.
    Sevinçli H; Sevik C; Caın T; Cuniberti G
    Sci Rep; 2013; 3():1228. PubMed ID: 23390578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effective-tensional-strain-driven bandgap modulations in helical graphene nanoribbons.
    Zhang DB; Dumitrică T
    Small; 2011 Apr; 7(8):1023-7. PubMed ID: 21456098
    [No Abstract]   [Full Text] [Related]  

  • 12. Controlled carbon-nanotube junctions self-assembled from graphene nanoribbons.
    He L; Lu JQ; Jiang H
    Small; 2009 Dec; 5(24):2802-6. PubMed ID: 19927297
    [No Abstract]   [Full Text] [Related]  

  • 13. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.
    D'Arcy JM; Tran HD; Stieg AZ; Gimzewski JK; Kaner RB
    Nanoscale; 2012 May; 4(10):3075-82. PubMed ID: 22415611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural Origin of the Activity in Mn3O4-Graphene Oxide Hybrid Electrocatalysts for the Oxygen Reduction Reaction.
    Wu KH; Zeng Q; Zhang B; Leng X; Su DS; Gentle IR; Wang DW
    ChemSusChem; 2015 Oct; 8(19):3331-9. PubMed ID: 26448527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breakdown of fast water transport in graphene oxides.
    Wei N; Peng X; Xu Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):012113. PubMed ID: 24580178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
    Yu D; Liu F
    Nano Lett; 2007 Oct; 7(10):3046-50. PubMed ID: 17845065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. One-pot synthesis of conducting graphene-polymer composites and their strain sensing application.
    Eswaraiah V; Balasubramaniam K; Ramaprabhu S
    Nanoscale; 2012 Feb; 4(4):1258-62. PubMed ID: 22241161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable transport gap in narrow bilayer graphene nanoribbons.
    Yu WJ; Duan X
    Sci Rep; 2013; 3():1248. PubMed ID: 23409239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-layer graphene oxide sheet: a novel substrate for dip-pen nanolithography.
    Li H; Cao X; Li B; Zhou X; Lu G; Liusman C; He Q; Boey F; Venkatraman SS; Zhang H
    Chem Commun (Camb); 2011 Sep; 47(36):10070-2. PubMed ID: 21829792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming graphene nanoribbons into nanotubes by use of point defects.
    Sgouros A; Sigalas MM; Papagelis K; Kalosakas G
    J Phys Condens Matter; 2014 Mar; 26(12):125301. PubMed ID: 24594675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.