These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 21381223)
1. In vitro metabolic studies using homogenized horse liver in place of horse liver microsomes. Wong JK; Tang FP; Wan TS Drug Test Anal; 2011 Jun; 3(6):393-9. PubMed ID: 21381223 [TBL] [Abstract][Full Text] [Related]
2. Generation of phase II in vitro metabolites using homogenized horse liver. Wong JK; Chan GH; Leung DK; Tang FP; Wan TS Drug Test Anal; 2016 Feb; 8(2):241-7. PubMed ID: 26352508 [TBL] [Abstract][Full Text] [Related]
3. Metabolic studies of turinabol in horses. Ho EN; Kwok WH; Leung DK; Wan TS; Wong AS Anal Chim Acta; 2007 Mar; 586(1-2):208-16. PubMed ID: 17386713 [TBL] [Abstract][Full Text] [Related]
4. Metabolic studies of oxyguno in horses. Wong AS; Ho EN; Wan TS; Lam KK; Stewart BD Anal Chim Acta; 2015 Sep; 891():190-202. PubMed ID: 26388378 [TBL] [Abstract][Full Text] [Related]
5. In vitro and in vivo studies of androst-4-ene-3,6,17-trione in horses by gas chromatography-mass spectrometry. Leung GN; Tang FP; Wan TS; Wong CH; Lam KK; Stewart BD Biomed Chromatogr; 2010 Jul; 24(7):744-51. PubMed ID: 19882746 [TBL] [Abstract][Full Text] [Related]
6. In vitro phase I metabolism of selective estrogen receptor modulators in horse using ultra-high performance liquid chromatography-high resolution mass spectrometry. Kwok KY; Chan GHM; Kwok WH; Wong JKY; Wan TSM Drug Test Anal; 2017 Sep; 9(9):1349-1362. PubMed ID: 28054434 [TBL] [Abstract][Full Text] [Related]
7. In vitro metabolism of testosterone in the horse liver and involvement of equine CYPs 3A89, 3A94 and 3A95. Schmitz A; Zielinski J; Dick B; Mevissen M J Vet Pharmacol Ther; 2014 Aug; 37(4):338-47. PubMed ID: 24479850 [TBL] [Abstract][Full Text] [Related]
8. The application of in vitro technologies to study the metabolism of the androgenic/anabolic steroid stanozolol in the equine. Scarth JP; Spencer HA; Hudson SC; Teale P; Gray BP; Hillyer LL Steroids; 2010 Jan; 75(1):57-69. PubMed ID: 19854209 [TBL] [Abstract][Full Text] [Related]
9. Metabolic study of androsta-1,4,6-triene-3,17-dione in horses using liquid chromatography/high resolution mass spectrometry. Kwok WH; Leung GN; Wan TS; Curl P; Schiff PJ J Steroid Biochem Mol Biol; 2015 Aug; 152():142-54. PubMed ID: 26031748 [TBL] [Abstract][Full Text] [Related]
10. Evidence of boldenone, nandrolone, 5(10)-estrene-3β-17α-diol and 4-estrene-3,17-dione as minor metabolites of testosterone in equine. Wong JKY; Leung DKK; Curl P; Schiff PJ; Lam KKH; Wan TSM Drug Test Anal; 2017 Sep; 9(9):1337-1348. PubMed ID: 28322013 [TBL] [Abstract][Full Text] [Related]
11. Mouldy feed: A possible explanation for the excretion of anabolic-androgenic steroids in horses. Decloedt AI; Bailly-Chouriberry L; Vanden Bussche J; Garcia P; Popot MA; Bonnaire Y; Vanhaecke L Drug Test Anal; 2016 May; 8(5-6):525-34. PubMed ID: 27443207 [TBL] [Abstract][Full Text] [Related]
12. Metabolic studies of 1-testosterone in horses. Kwok WH; Ho EN; Leung GN; Tang FP; Wan TS; Wong HN; Yeung JH Drug Test Anal; 2013 Feb; 5(2):81-8. PubMed ID: 22715048 [TBL] [Abstract][Full Text] [Related]
13. Inhibition of in vitro metabolism of testosterone in human, dog and horse liver microsomes to investigate species differences. Zielinski J; Mevissen M Toxicol In Vitro; 2015 Apr; 29(3):468-78. PubMed ID: 25561246 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo metabolism of the anabolic-androgenic steroid oxandrolone in the horse. Harding C; Viljanto M; Cutler C; Habershon-Butcher J; Biddle S; Scarth J Drug Test Anal; 2022 Jan; 14(1):39-55. PubMed ID: 34378336 [TBL] [Abstract][Full Text] [Related]
15. Applications of gas chromatography-mass spectrometry in the study of androgen and odorous 16-androstene metabolism by human axillary bacteria. Mallet AI; Holland KT; Rennie PJ; Watkins WJ; Gower DB J Chromatogr; 1991 Jan; 562(1-2):647-58. PubMed ID: 2026727 [TBL] [Abstract][Full Text] [Related]
16. In vitro simulation of the equine hindgut as a tool to study the influence of phytosterol consumption on the excretion of anabolic-androgenic steroids in horses. Decloedt AI; Bailly-Chouriberry L; Vanden Bussche J; Garcia P; Popot MA; Bonnaire Y; Vanhaecke L J Steroid Biochem Mol Biol; 2015 Aug; 152():180-92. PubMed ID: 26094581 [TBL] [Abstract][Full Text] [Related]
17. The use of in vitro technologies coupled with high resolution accurate mass LC-MS for studying drug metabolism in equine drug surveillance. Scarth JP; Spencer HA; Timbers SE; Hudson SC; Hillyer LL Drug Test Anal; 2010 Jan; 2(1):1-10. PubMed ID: 20878880 [TBL] [Abstract][Full Text] [Related]
18. In vivo biotransformation of 17 alpha-methyltestosterone in the horse revisited: identification of 17-hydroxymethyl metabolites in equine urine by capillary gas chromatography/mass spectrometry. Dumasia MC Rapid Commun Mass Spectrom; 2003; 17(4):320-9. PubMed ID: 12569442 [TBL] [Abstract][Full Text] [Related]
19. Screening of anabolic steroids in horse urine by liquid chromatography-tandem mass spectrometry. Yu NH; Ho EN; Leung DK; Wan TS J Pharm Biomed Anal; 2005 Apr; 37(5):1031-8. PubMed ID: 15862683 [TBL] [Abstract][Full Text] [Related]
20. Comparison of sulfo-conjugated and gluco-conjugated urinary metabolites for detection of methenolone misuse in doping control by LC-HRMS, GC-MS and GC-HRMS. Fragkaki AG; Angelis YS; Kiousi P; Georgakopoulos CG; Lyris E J Mass Spectrom; 2015 May; 50(5):740-8. PubMed ID: 26259657 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]