These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 21381487)

  • 1. Validation of a morphometric reconstruction technique applied to a juvenile pelvis.
    Watson PJ; O'Higgins P; Fagan MJ; Dobson CA
    Proc Inst Mech Eng H; 2011 Jan; 225(1):48-57. PubMed ID: 21381487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity to model geometry in finite element analyses of reconstructed skeletal structures: experience with a juvenile pelvis.
    Watson PJ; Fagan MJ; Dobson CA
    Proc Inst Mech Eng H; 2015 Jan; 229(1):9-19. PubMed ID: 25542612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The finite element modeling of human pelvis and its application in medicolegal expertise].
    Li ZD; Zou DH; Liu NG; Huang P; Chen YJ
    Fa Yi Xue Za Zhi; 2010 Dec; 26(6):406-12. PubMed ID: 21425599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical shape model-based reconstruction of a scaled, patient-specific surface model of the pelvis from a single standard AP x-ray radiograph.
    Zheng G
    Med Phys; 2010 Apr; 37(4):1424-39. PubMed ID: 20443464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Development and validating of a three-dimensional finite element model of total human pelvis].
    Cheng LM; Jia YW; Yu GR; Du CF; Yu Y; Lou YJ; Ding ZQ
    Zhonghua Yi Xue Za Zhi; 2007 Dec; 87(47):3346-8. PubMed ID: 18478949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computed tomography landmark-based semi-automated mesh morphing and mapping techniques: generation of patient specific models of the human pelvis without segmentation.
    Salo Z; Beek M; Wright D; Whyne CM
    J Biomech; 2015 Apr; 48(6):1125-32. PubMed ID: 25680299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical comparison of the human cadaveric pelvis with a fourth generation composite model.
    Girardi BL; Attia T; Backstein D; Safir O; Willett TL; Kuzyk PR
    J Biomech; 2016 Feb; 49(4):537-42. PubMed ID: 26839060
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies.
    Haas B; Coradi T; Scholz M; Kunz P; Huber M; Oppitz U; André L; Lengkeek V; Huyskens D; van Esch A; Reddick R
    Phys Med Biol; 2008 Mar; 53(6):1751-71. PubMed ID: 18367801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Potentialities of intravital methods of the evaluation of morphometric pelvic characteristics in adult persons].
    Gaĭvoronskiĭ IV; Trufanov GE; Vinogradov SV
    Morfologiia; 2006; 129(3):76-81. PubMed ID: 17111668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Customized 3D radiographic reconstruction of the human pelvis].
    Gauvin C; Dansereau J; Petit Y; De Guise JA; Labelle H
    Ann Chir; 1998; 52(8):744-51. PubMed ID: 9846424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accuracy assessment of 3D bone reconstructions using CT: an intro comparison.
    Lalone EA; Willing RT; Shannon HL; King GJ; Johnson JA
    Med Eng Phys; 2015 Aug; 37(8):729-38. PubMed ID: 26037323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Best methods and data to reconstruct paediatric lower limb bones for musculoskeletal modelling.
    Davico G; Pizzolato C; Killen BA; Barzan M; Suwarganda EK; Lloyd DG; Carty CP
    Biomech Model Mechanobiol; 2020 Aug; 19(4):1225-1238. PubMed ID: 31691037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-dimensional, anatomically detailed foot model: a foundation for a finite element simulation and means of quantifying foot-bone position.
    Camacho DL; Ledoux WR; Rohr ES; Sangeorzan BJ; Ching RP
    J Rehabil Res Dev; 2002; 39(3):401-10. PubMed ID: 12173760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element analysis of a femur to deconstruct the paradox of bone curvature.
    Jade S; Tamvada KH; Strait DS; Grosse IR
    J Theor Biol; 2014 Jan; 341():53-63. PubMed ID: 24099719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimal medical imaging can accurately reconstruct geometric bone models for musculoskeletal models.
    Suwarganda EK; Diamond LE; Lloyd DG; Besier TF; Zhang J; Killen BA; Savage TN; Saxby DJ
    PLoS One; 2019; 14(2):e0205628. PubMed ID: 30742643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthropometric dependence of the response of a thorax FE model under high speed loading: validation and real world accident replication.
    Roth S; Torres F; Feuerstein P; Thoral-Pierre K
    Comput Methods Programs Biomed; 2013 May; 110(2):160-70. PubMed ID: 23246086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-dimensional sectioned images and three-dimensional surface models for learning the anatomy of the female pelvis.
    Shin DS; Jang HG; Hwang SB; Har DH; Moon YL; Chung MS
    Anat Sci Educ; 2013; 6(5):316-23. PubMed ID: 23463707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Voxel-based approach to generate entire human metacarpal bone with microscopic architecture for finite element analysis.
    Tang CY; Tsui CP; Tang YM; Wei L; Wong CT; Lam KW; Ip WY; Lu WW; Pang MY
    Biomed Mater Eng; 2014; 24(2):1469-84. PubMed ID: 24642974
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of boundary condition on the biomechanics of a human pelvic joint under an axial compressive load: a three-dimensional finite element model.
    Hao Z; Wan C; Gao X; Ji T
    J Biomech Eng; 2011 Oct; 133(10):101006. PubMed ID: 22070331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pylon concept of pelvic anchorage for spinal instrumentation in the human cadaver.
    Schwend RM; Sluyters R; Najdzionek J
    Spine (Phila Pa 1976); 2003 Mar; 28(6):542-7. PubMed ID: 12642759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.