BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21381665)

  • 1. Highly oxidizing excited states of one-electron-oxidized guanine in DNA: wavelength and pH dependence.
    Khanduri D; Adhikary A; Sevilla MD
    J Am Chem Soc; 2011 Mar; 133(12):4527-37. PubMed ID: 21381665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures.
    Adhikary A; Malkhasian AY; Collins S; Koppen J; Becker D; Sevilla MD
    Nucleic Acids Res; 2005; 33(17):5553-64. PubMed ID: 16204456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sugar radicals formed by photoexcitation of guanine cation radical in oligonucleotides.
    Adhikary A; Collins S; Khanduri D; Sevilla MD
    J Phys Chem B; 2007 Jun; 111(25):7415-21. PubMed ID: 17547448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals.
    Shukla LI; Pazdro R; Huang J; DeVreugd C; Becker D; Sevilla MD
    Radiat Res; 2004 May; 161(5):582-90. PubMed ID: 15161365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prototropic equilibria in DNA containing one-electron oxidized GC: intra-duplex vs. duplex to solvent deprotonation.
    Adhikary A; Kumar A; Munafo SA; Khanduri D; Sevilla MD
    Phys Chem Chem Phys; 2010; 12(20):5353-68. PubMed ID: 21491657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron and hole transfer from DNA base radicals to oxidized products of guanine in DNA.
    Cai Z; Sevilla MD
    Radiat Res; 2003 Mar; 159(3):411-9. PubMed ID: 12600244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reduction of electron deficient guanine radical species in plasmid DNA by tyrosine derivatives.
    Tsoi M; Do TT; Tang VJ; Aguilera JA; Milligan JR
    Org Biomol Chem; 2010 Jun; 8(11):2553-9. PubMed ID: 20485790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct observation of the hole protonation state and hole localization site in DNA-oligomers.
    Adhikary A; Khanduri D; Sevilla MD
    J Am Chem Soc; 2009 Jun; 131(24):8614-9. PubMed ID: 19469533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Guanine Radicals Induced in DNA by Low-Energy Photoionization.
    Balanikas E; Banyasz A; Douki T; Baldacchino G; Markovitsi D
    Acc Chem Res; 2020 Aug; 53(8):1511-1519. PubMed ID: 32786340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactions of 5-methylcytosine cation radicals in DNA and model systems: thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar.
    Adhikary A; Kumar A; Palmer BJ; Todd AD; Heizer AN; Sevilla MD
    Int J Radiat Biol; 2014 Jun; 90(6):433-45. PubMed ID: 24428230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactivity of DNA guanyl radicals with phenolate anions.
    Ly A; Bandong SL; Tran NQ; Sullivan KJ; Milligan JR
    J Phys Chem B; 2005 Jul; 109(27):13368-74. PubMed ID: 16852669
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron-transfer oxidation properties of DNA bases and DNA oligomers.
    Fukuzumi S; Miyao H; Ohkubo K; Suenobu T
    J Phys Chem A; 2005 Apr; 109(15):3285-94. PubMed ID: 16833661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions: relationship between kinetics and distribution of alkali-labile lesions.
    Lee YA; Durandin A; Dedon PC; Geacintov NE; Shafirovich V
    J Phys Chem B; 2008 Feb; 112(6):1834-44. PubMed ID: 18211057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of aminyl radicals on electron attachment to AZT: abstraction from the sugar phosphate backbone versus one-electron oxidation of guanine.
    Adhikary A; Khanduri D; Pottiboyina V; Rice CT; Sevilla MD
    J Phys Chem B; 2010 Jul; 114(28):9289-99. PubMed ID: 20575557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The guanine cation radical: investigation of deprotonation states by ESR and DFT.
    Adhikary A; Kumar A; Becker D; Sevilla MD
    J Phys Chem B; 2006 Nov; 110(47):24171-80. PubMed ID: 17125389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate.
    Lee YA; Yun BH; Kim SK; Margolin Y; Dedon PC; Geacintov NE; Shafirovich V
    Chemistry; 2007; 13(16):4571-81. PubMed ID: 17335089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of guanine oxidation products in double-stranded DNA and proposed guanine oxidation pathways in single-stranded, double-stranded or quadruplex DNA.
    Morikawa M; Kino K; Oyoshi T; Suzuki M; Kobayashi T; Miyazawa H
    Biomolecules; 2014 Feb; 4(1):140-59. PubMed ID: 24970209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the evolution of one-electron-oxidized deoxyguanosine in damaged DNA under physiological conditions: a DFT and ONIOM study on proton transfer and equilibrium.
    Galano A; Alvarez-Idaboy JR
    Phys Chem Chem Phys; 2012 Sep; 14(36):12476-84. PubMed ID: 22644531
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of sugar radicals in RNA model systems and oligomers via excitation of guanine cation radical.
    Khanduri D; Collins S; Kumar A; Adhikary A; Sevilla MD
    J Phys Chem B; 2008 Feb; 112(7):2168-78. PubMed ID: 18225886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of proton transfer in the reductive repair of DNA guanyl radicals by aniline derivatives.
    Ly A; Tran NQ; Sullivan K; Bandong SL; Milligan JR
    Org Biomol Chem; 2005 Mar; 3(5):917-23. PubMed ID: 15731879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.