These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21381665)
1. Highly oxidizing excited states of one-electron-oxidized guanine in DNA: wavelength and pH dependence. Khanduri D; Adhikary A; Sevilla MD J Am Chem Soc; 2011 Mar; 133(12):4527-37. PubMed ID: 21381665 [TBL] [Abstract][Full Text] [Related]
2. UVA-visible photo-excitation of guanine radical cations produces sugar radicals in DNA and model structures. Adhikary A; Malkhasian AY; Collins S; Koppen J; Becker D; Sevilla MD Nucleic Acids Res; 2005; 33(17):5553-64. PubMed ID: 16204456 [TBL] [Abstract][Full Text] [Related]
3. Sugar radicals formed by photoexcitation of guanine cation radical in oligonucleotides. Adhikary A; Collins S; Khanduri D; Sevilla MD J Phys Chem B; 2007 Jun; 111(25):7415-21. PubMed ID: 17547448 [TBL] [Abstract][Full Text] [Related]
4. The formation of DNA sugar radicals from photoexcitation of guanine cation radicals. Shukla LI; Pazdro R; Huang J; DeVreugd C; Becker D; Sevilla MD Radiat Res; 2004 May; 161(5):582-90. PubMed ID: 15161365 [TBL] [Abstract][Full Text] [Related]
5. Prototropic equilibria in DNA containing one-electron oxidized GC: intra-duplex vs. duplex to solvent deprotonation. Adhikary A; Kumar A; Munafo SA; Khanduri D; Sevilla MD Phys Chem Chem Phys; 2010; 12(20):5353-68. PubMed ID: 21491657 [TBL] [Abstract][Full Text] [Related]
6. Electron and hole transfer from DNA base radicals to oxidized products of guanine in DNA. Cai Z; Sevilla MD Radiat Res; 2003 Mar; 159(3):411-9. PubMed ID: 12600244 [TBL] [Abstract][Full Text] [Related]
7. Reduction of electron deficient guanine radical species in plasmid DNA by tyrosine derivatives. Tsoi M; Do TT; Tang VJ; Aguilera JA; Milligan JR Org Biomol Chem; 2010 Jun; 8(11):2553-9. PubMed ID: 20485790 [TBL] [Abstract][Full Text] [Related]
8. Direct observation of the hole protonation state and hole localization site in DNA-oligomers. Adhikary A; Khanduri D; Sevilla MD J Am Chem Soc; 2009 Jun; 131(24):8614-9. PubMed ID: 19469533 [TBL] [Abstract][Full Text] [Related]
9. Guanine Radicals Induced in DNA by Low-Energy Photoionization. Balanikas E; Banyasz A; Douki T; Baldacchino G; Markovitsi D Acc Chem Res; 2020 Aug; 53(8):1511-1519. PubMed ID: 32786340 [TBL] [Abstract][Full Text] [Related]
10. Reactions of 5-methylcytosine cation radicals in DNA and model systems: thermal deprotonation from the 5-methyl group vs. excited state deprotonation from sugar. Adhikary A; Kumar A; Palmer BJ; Todd AD; Heizer AN; Sevilla MD Int J Radiat Biol; 2014 Jun; 90(6):433-45. PubMed ID: 24428230 [TBL] [Abstract][Full Text] [Related]
11. Reactivity of DNA guanyl radicals with phenolate anions. Ly A; Bandong SL; Tran NQ; Sullivan KJ; Milligan JR J Phys Chem B; 2005 Jul; 109(27):13368-74. PubMed ID: 16852669 [TBL] [Abstract][Full Text] [Related]
12. Electron-transfer oxidation properties of DNA bases and DNA oligomers. Fukuzumi S; Miyao H; Ohkubo K; Suenobu T J Phys Chem A; 2005 Apr; 109(15):3285-94. PubMed ID: 16833661 [TBL] [Abstract][Full Text] [Related]
13. Oxidation of guanine in G, GG, and GGG sequence contexts by aromatic pyrenyl radical cations and carbonate radical anions: relationship between kinetics and distribution of alkali-labile lesions. Lee YA; Durandin A; Dedon PC; Geacintov NE; Shafirovich V J Phys Chem B; 2008 Feb; 112(6):1834-44. PubMed ID: 18211057 [TBL] [Abstract][Full Text] [Related]
14. Formation of aminyl radicals on electron attachment to AZT: abstraction from the sugar phosphate backbone versus one-electron oxidation of guanine. Adhikary A; Khanduri D; Pottiboyina V; Rice CT; Sevilla MD J Phys Chem B; 2010 Jul; 114(28):9289-99. PubMed ID: 20575557 [TBL] [Abstract][Full Text] [Related]
15. The guanine cation radical: investigation of deprotonation states by ESR and DFT. Adhikary A; Kumar A; Becker D; Sevilla MD J Phys Chem B; 2006 Nov; 110(47):24171-80. PubMed ID: 17125389 [TBL] [Abstract][Full Text] [Related]
16. Mechanisms of oxidation of guanine in DNA by carbonate radical anion, a decomposition product of nitrosoperoxycarbonate. Lee YA; Yun BH; Kim SK; Margolin Y; Dedon PC; Geacintov NE; Shafirovich V Chemistry; 2007; 13(16):4571-81. PubMed ID: 17335089 [TBL] [Abstract][Full Text] [Related]
17. Analysis of guanine oxidation products in double-stranded DNA and proposed guanine oxidation pathways in single-stranded, double-stranded or quadruplex DNA. Morikawa M; Kino K; Oyoshi T; Suzuki M; Kobayashi T; Miyazawa H Biomolecules; 2014 Feb; 4(1):140-59. PubMed ID: 24970209 [TBL] [Abstract][Full Text] [Related]
18. On the evolution of one-electron-oxidized deoxyguanosine in damaged DNA under physiological conditions: a DFT and ONIOM study on proton transfer and equilibrium. Galano A; Alvarez-Idaboy JR Phys Chem Chem Phys; 2012 Sep; 14(36):12476-84. PubMed ID: 22644531 [TBL] [Abstract][Full Text] [Related]
19. Formation of sugar radicals in RNA model systems and oligomers via excitation of guanine cation radical. Khanduri D; Collins S; Kumar A; Adhikary A; Sevilla MD J Phys Chem B; 2008 Feb; 112(7):2168-78. PubMed ID: 18225886 [TBL] [Abstract][Full Text] [Related]
20. Involvement of proton transfer in the reductive repair of DNA guanyl radicals by aniline derivatives. Ly A; Tran NQ; Sullivan K; Bandong SL; Milligan JR Org Biomol Chem; 2005 Mar; 3(5):917-23. PubMed ID: 15731879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]