These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 21381672)

  • 1. Water dynamics in hectorite clays: influence of temperature studied by coupling neutron spin echo and molecular dynamics.
    Marry V; Dubois E; Malikova N; Durand-Vidal S; Longeville S; Breu J
    Environ Sci Technol; 2011 Apr; 45(7):2850-5. PubMed ID: 21381672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational diffusion of water and its dependence on temperature in charged and uncharged clays: A neutron scattering study.
    González Sánchez F; Jurányi F; Gimmi T; Van Loon L; Unruh T; Diamond LW
    J Chem Phys; 2008 Nov; 129(17):174706. PubMed ID: 19045369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffusion of water in clays on the microscopic scale: modeling and experiment.
    Malikova N; Cadène A; Marry V; Dubois E; Turq P
    J Phys Chem B; 2006 Feb; 110(7):3206-14. PubMed ID: 16494330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of confined reactive water in smectite clay-zeolite composites.
    Pitman MC; van Duin AC
    J Am Chem Soc; 2012 Feb; 134(6):3042-53. PubMed ID: 22233236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking the diffusion of water in compacted clays at two different time scales: tracer through-diffusion and quasielastic neutron scattering.
    González Sánchez F; Gimmi T; Jurányi F; Van Loon L; Diamond LW
    Environ Sci Technol; 2009 May; 43(10):3487-93. PubMed ID: 19544844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of Cesium on smectite-rich clays from the Bohemian Massif (Czech Republic) and their mixtures with sand.
    Vejsada J; Jelínek E; Randa Z; Hradil D; Prikryl R
    Appl Radiat Isot; 2005 Jan; 62(1):91-6. PubMed ID: 15498690
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of a Morse potential to model hydroxyl behavior in phyllosilicates.
    Greathouse JA; Durkin JS; Larentzos JP; Cygan RT
    J Chem Phys; 2009 Apr; 130(13):134713. PubMed ID: 19355770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of surface water in ZrO2 studied by quasielastic neutron scattering.
    Mamontov E
    J Chem Phys; 2004 Nov; 121(18):9087-97. PubMed ID: 15527375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clay minerals mediate folding and regioselective interactions of RNA: a large-scale atomistic simulation study.
    Swadling JB; Coveney PV; Greenwell HC
    J Am Chem Soc; 2010 Oct; 132(39):13750-64. PubMed ID: 20843023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of water in a molecular sieve by quasielastic neutron scattering.
    Swenson J; Jansson H; Howells WS; Longeville S
    J Chem Phys; 2005 Feb; 122(8):84505. PubMed ID: 15836061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The low-temperature dynamic crossover phenomenon in protein hydration water: simulations vs experiments.
    Lagi M; Chu X; Kim C; Mallamace F; Baglioni P; Chen SH
    J Phys Chem B; 2008 Feb; 112(6):1571-5. PubMed ID: 18205352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction between viruses and clays in static and dynamic batch systems.
    Syngouna VI; Chrysikopoulos CV
    Environ Sci Technol; 2010 Jun; 44(12):4539-44. PubMed ID: 20496906
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of water in molecular sieves by dielectric spectroscopy.
    Jansson H; Swenson J
    Eur Phys J E Soft Matter; 2003 Nov; 12 Suppl 1():S51-4. PubMed ID: 15011015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water motion in reverse micelles studied by quasielastic neutron scattering and molecular dynamics simulations.
    Harpham MR; Ladanyi BM; Levinger NE; Herwig KW
    J Chem Phys; 2004 Oct; 121(16):7855-68. PubMed ID: 15485248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of high-temperature dynamic crossover in protein hydration water and its relation to reversible denaturation of lysozyme.
    Zhang Y; Lagi M; Liu D; Mallamace F; Fratini E; Baglioni P; Mamontov E; Hagen M; Chen SH
    J Chem Phys; 2009 Apr; 130(13):135101. PubMed ID: 19355784
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution neutron-scattering study of slow dynamics of surface water molecules in zirconium oxide.
    Mamontov E
    J Chem Phys; 2005 Jul; 123(2):24706. PubMed ID: 16050765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temperature dependence of protein-hydration hydrodynamics by molecular dynamics simulations.
    Lau EY; Krishnan VV
    Biophys Chem; 2007 Oct; 130(1-2):55-64. PubMed ID: 17720293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral interactions of histidine in a hydrated vermiculite clay.
    Fraser DG; Greenwell HC; Skipper NT; Smalley MV; Wilkinson MA; Demé B; Heenan RK
    Phys Chem Chem Phys; 2011 Jan; 13(3):825-30. PubMed ID: 21031173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic assessment of the variation of the surface areas of two synthetic swelling clays during adsorption of water.
    Lantenois S; Nedellec Y; Prélot B; Zajac J; Muller F; Douillard JM
    J Colloid Interface Sci; 2007 Dec; 316(2):1003-11. PubMed ID: 17884066
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aqueous suspensions of natural swelling clay minerals. 1. Structure and electrostatic interactions.
    Paineau E; Bihannic I; Baravian C; Philippe AM; Davidson P; Levitz P; Funari SS; Rochas C; Michot LJ
    Langmuir; 2011 May; 27(9):5562-73. PubMed ID: 21476528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.