BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21381723)

  • 1. Kinetic analysis of the phenyl-shift reaction in β-O-4 lignin model compounds: a computational study.
    Beste A; Buchanan AC
    J Org Chem; 2011 Apr; 76(7):2195-203. PubMed ID: 21381723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational prediction of alpha/beta selectivities in the pyrolysis of oxygen-substituted phenethyl phenyl ethers.
    Beste A; Buchanan AC; Harrison RJ
    J Phys Chem A; 2008 Jun; 112(22):4982-8. PubMed ID: 18473447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of the pyrolysis of phenethyl phenyl ether: computational prediction of alpha/beta-selectivities.
    Beste A; Buchanan AC; Britt PF; Hathorn BC; Harrison RJ
    J Phys Chem A; 2007 Dec; 111(48):12118-26. PubMed ID: 17990858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of carbon-carbon phenyl migration in the pyrolysis mechanism of β-O-4 lignin model compounds: phenethyl phenyl ether and α-hydroxy phenethyl phenyl ether.
    Beste A; Buchanan AC
    J Phys Chem A; 2012 Dec; 116(50):12242-8. PubMed ID: 23194314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational study of bond dissociation enthalpies for lignin model compounds. Substituent effects in phenethyl phenyl ethers.
    Beste A; Buchanan AC
    J Org Chem; 2009 Apr; 74(7):2837-41. PubMed ID: 19260664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational investigation of the pyrolysis product selectivity for α-hydroxy phenethyl phenyl ether and phenethyl phenyl ether: analysis of substituent effects and reactant conformer selection.
    Beste A; Buchanan AC
    J Phys Chem A; 2013 Apr; 117(15):3235-42. PubMed ID: 23514452
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational study of bond dissociation enthalpies for substituted β-O-4 lignin model compounds.
    Younker JM; Beste A; Buchanan AC
    Chemphyschem; 2011 Dec; 12(18):3556-65. PubMed ID: 22065478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flash vacuum pyrolysis of methoxy-substituted lignin model compounds.
    Britt PF; Buchanan AC; Cooney MJ; Martineau DR
    J Org Chem; 2000 Mar; 65(5):1376-89. PubMed ID: 10814099
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics and mechanism of the sensitized photodegradation of lignin model compounds.
    McNally AM; Moody EC; McNeill K
    Photochem Photobiol Sci; 2005 Mar; 4(3):268-74. PubMed ID: 15738994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variational analysis of the phenyl + O2 and phenoxy + O reactions.
    da Silva G; Bozzelli JW
    J Phys Chem A; 2008 Apr; 112(16):3566-75. PubMed ID: 18348555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DFT evidence for a stepwise mechanism in the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals.
    Bietti M; Ercolani G; Salamone M
    J Org Chem; 2007 Jun; 72(12):4515-9. PubMed ID: 17488038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lignin peroxidase-catalyzed oxidation of nonphenolic trimeric lignin model compounds: fragmentation reactions in the intermediate radical cations.
    Baciocchi E; Fabbri C; Lanzalunga O
    J Org Chem; 2003 Nov; 68(23):9061-9. PubMed ID: 14604381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nature and kinetic analysis of carbon-carbon bond fragmentation reactions of cation radicals derived from SET-oxidation of lignin model compounds.
    Cho DW; Parthasarathi R; Pimentel AS; Maestas GD; Park HJ; Yoon UC; Dunaway-Mariano D; Gnanakaran S; Langan P; Mariano PS
    J Org Chem; 2010 Oct; 75(19):6549-62. PubMed ID: 20831160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toluene combustion: reaction paths, thermochemical properties, and kinetic analysis for the methylphenyl radical + O2 reaction.
    da Silva G; Chen CC; Bozzelli JW
    J Phys Chem A; 2007 Sep; 111(35):8663-76. PubMed ID: 17696501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reaction of phenols with the 2,2-diphenyl-1-picrylhydrazyl radical. Kinetics and DFT calculations applied to determine ArO-H bond dissociation enthalpies and reaction mechanism.
    Foti MC; Daquino C; Mackie ID; DiLabio GA; Ingold KU
    J Org Chem; 2008 Dec; 73(23):9270-82. PubMed ID: 18991378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyrolysis of phenethyl phenyl ether tethered in mesoporous silica. Effects of confinement and surface spacer molecules on product selectivity.
    Kidder MK; Chaffee AL; Nguyen MH; Buchanan AC
    J Org Chem; 2011 Aug; 76(15):6014-23. PubMed ID: 21696147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chalcone epoxide intermediates in the syntheses of lignin-related phenylcoumarans.
    Langer V; Li S; Lundquist K
    Acta Crystallogr C; 2006 Oct; 62(Pt 10):o625-7. PubMed ID: 17008753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative addition of the Cα-Cβ bond in β-O-4 linkage of lignin to transition metals using a relativistic pseudopotential-based ccCA-ONIOM method.
    Oyedepo GA; Wilson AK
    Chemphyschem; 2011 Dec; 12(17):3320-30. PubMed ID: 22144374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum chemical study of the thermal decomposition of o-quinone methide (6-methylene-2,4-cyclohexadien-1-one).
    Silva Gd; Bozzelli JW
    J Phys Chem A; 2007 Aug; 111(32):7987-94. PubMed ID: 17645323
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct detection of products from the pyrolysis of 2-phenethyl phenyl ether.
    Jarvis MW; Daily JW; Carstensen HH; Dean AM; Sharma S; Dayton DC; Robichaud DJ; Nimlos MR
    J Phys Chem A; 2011 Feb; 115(4):428-38. PubMed ID: 21218825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.