BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21381723)

  • 21. Acid-catalyzed hydrolysis of lignin β-O-4 linkages in ionic liquid solvents: a computational mechanistic study.
    Janesko BG
    Phys Chem Chem Phys; 2014 Mar; 16(11):5423-33. PubMed ID: 24509442
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Model compound studies of the beta-O-4 linkage in lignin: absolute rate expressions for beta-scission of phenoxyl radical from 1-phenyl-2-phenoxyethanol-1-yl radical.
    Kandanarachchi PH; Autrey T; Franz JA
    J Org Chem; 2002 Nov; 67(23):7937-45. PubMed ID: 12423121
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aerobic oxidation of lignin models using a base metal vanadium catalyst.
    Hanson SK; Baker RT; Gordon JC; Scott BL; Thorn DL
    Inorg Chem; 2010 Jun; 49(12):5611-8. PubMed ID: 20491453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of ring substitution on the O-neophyl rearrangement of 1,1-diarylalkoxyl radicals. A product and time-resolved kinetic study.
    Aureliano Antunes CS; Bietti M; Ercolani G; Lanzalunga O; Salamone M
    J Org Chem; 2005 May; 70(10):3884-91. PubMed ID: 15876075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of a Criegee intermediate in the low-temperature oxidation of dimethyl sulfoxide.
    Asatryan R; Bozzelli JW
    Phys Chem Chem Phys; 2008 Apr; 10(13):1769-80. PubMed ID: 18350182
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Comprehensive Study on Pyrolysis Mechanism of Substituted β-O-4 Type Lignin Dimers.
    Jiang X; Lu Q; Hu B; Liu J; Dong C; Yang Y
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29120350
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactivity of triarylphosphine peroxyl radical cations generated through the reaction of triarylphosphine radical cations with oxygen.
    Tojo S; Yasui S; Fujitsuka M; Majima T
    J Org Chem; 2006 Oct; 71(21):8227-32. PubMed ID: 17025316
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular modeling of syringyl and p-hydroxyphenyl beta-O-4 dimers. Comparative study of the computed and experimental conformational properties of lignin beta-O-4 model compounds.
    Besombes S; Robert D; Utille JP; Taravel FR; Mazeau K
    J Agric Food Chem; 2003 Jan; 51(1):34-42. PubMed ID: 12502382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Triplet- vs. singlet-state imposed photochemistry. The role of substituent effects on the photo-Fries and photodissociation reaction of triphenylmethyl silanes.
    Zarkadis AK; Georgakilas V; Perdikomatis GP; Trifonov A; Gurzadyan GG; Skoulika S; Siskos MG
    Photochem Photobiol Sci; 2005 Jun; 4(6):469-80. PubMed ID: 15920631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetics and mechanisms for the reactions of phenyl radical with ketene and its deuterated isotopomer: an experimental and theoretical study.
    Choi YM; Lin MC
    Chemphyschem; 2004 Feb; 5(2):225-32. PubMed ID: 15038283
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The pyrolytic degradation of wood-derived lignin from pulping process.
    Shen DK; Gu S; Luo KH; Wang SR; Fang MX
    Bioresour Technol; 2010 Aug; 101(15):6136-46. PubMed ID: 20307972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of fast pyrolysis of lignin: studying model compounds.
    Custodis VB; Hemberger P; Ma Z; van Bokhoven JA
    J Phys Chem B; 2014 Jul; 118(29):8524-31. PubMed ID: 24937704
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energetics and kinetics of radical pairs in reaction centers from Rhodobacter sphaeroides. A femtosecond transient absorption study.
    Holzwarth AR; Müller MG
    Biochemistry; 1996 Sep; 35(36):11820-31. PubMed ID: 8794764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The comparative kinetic analysis of Acetocell and Lignoboost® lignin pyrolysis: the estimation of the distributed reactivity models.
    Janković B
    Bioresour Technol; 2011 Oct; 102(20):9763-71. PubMed ID: 21852115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From gene towards selective biomass valorization: bacterial β-etherases with catalytic activity on lignin-like polymers.
    Picart P; Müller C; Mottweiler J; Wiermans L; Bolm C; Domínguez de María P; Schallmey A
    ChemSusChem; 2014 Nov; 7(11):3164-71. PubMed ID: 25186983
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polypyrroles as antioxidants: kinetic studies on reactions of bilirubin and biliverdin dimethyl esters and synthetic model compounds with peroxyl radicals in solution. Chemical calculations on selected typical structures.
    Chepelev LL; Beshara CS; MacLean PD; Hatfield GL; Rand AA; Thompson A; Wright JS; Barclay LR
    J Org Chem; 2006 Jan; 71(1):22-30. PubMed ID: 16388613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydroxyl radical initiated oxidation of s-triazine: hydrogen abstraction is faster than hydroxyl addition.
    da Silva G; Bozzelli JW; Asatryan R
    J Phys Chem A; 2009 Jul; 113(30):8596-606. PubMed ID: 19572687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Significant lability of guaiacylglycerol beta-phenacyl ether under alkaline conditions.
    Imai A; Yokoyama T; Matsumoto Y; Meshitsuka G
    J Agric Food Chem; 2007 Oct; 55(22):9043-6. PubMed ID: 17914873
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A review of catalytic hydrodeoxygenation of lignin-derived phenols from biomass pyrolysis.
    Bu Q; Lei H; Zacher AH; Wang L; Ren S; Liang J; Wei Y; Liu Y; Tang J; Zhang Q; Ruan R
    Bioresour Technol; 2012 Nov; 124():470-7. PubMed ID: 23021958
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substituent and solvent effects on the beta-heterolysis reaction of beta-hydroxy arylethyl radicals.
    Cozens FL; Lancelot SF; Schepp NP
    J Org Chem; 2007 Dec; 72(26):10022-8. PubMed ID: 18004869
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.