These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21381783)

  • 1. Iron(III) tartrate as a potential precursor of light-induced oxidative degradation of white wine: studies in a model wine system.
    Clark AC; Dias DA; Smith TA; Ghiggino KP; Scollary GR
    J Agric Food Chem; 2011 Apr; 59(8):3575-81. PubMed ID: 21381783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoproduction of glyoxylic acid in model wine: Impact of sulfur dioxide, caffeic acid, pH and temperature.
    Grant-Preece P; Schmidtke LM; Barril C; Clark AC
    Food Chem; 2017 Jan; 215():292-300. PubMed ID: 27542478
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of fluorescent lighting on the browning potential of model wine solutions containing organic acids and iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    Food Chem; 2018 Mar; 243():239-248. PubMed ID: 29146334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of tartaric and malic acids in wine oxidation.
    Danilewicz JC
    J Agric Food Chem; 2014 Jun; 62(22):5149-55. PubMed ID: 24809227
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of Fluorescent Lighting on Oxidation of Model Wine Solutions Containing Organic Acids and Iron.
    Grant-Preece P; Barril C; Schmidtke LM; Clark AC
    J Agric Food Chem; 2017 Mar; 65(11):2383-2393. PubMed ID: 28238266
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antioxidant action of glutathione and the ascorbic acid/glutathione pair in a model white wine.
    Sonni F; Clark AC; Prenzler PD; Riponi C; Scollary GR
    J Agric Food Chem; 2011 Apr; 59(8):3940-9. PubMed ID: 21384873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibitory effect of fungoid chitosan in the generation of aldehydes relevant to photooxidative decay in a sulphite-free white wine.
    Castro Marin A; Stocker P; Chinnici F; Cassien M; Thétiot-Laurent S; Vidal N; Riponi C; Robillard B; Culcasi M; Pietri S
    Food Chem; 2021 Jul; 350():129222. PubMed ID: 33607411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isomeric influence on the oxidative coloration of phenolic compounds in a model white wine: comparison of (+)-catechin and (-)-epicatechin.
    Labrouche F; Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2005 Dec; 53(26):9993-8. PubMed ID: 16366685
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wine bottle colour and oxidative spoilage: whole bottle light exposure experiments under controlled and uncontrolled temperature conditions.
    Dias DA; Clark AC; Smith TA; Ghiggino KP; Scollary GR
    Food Chem; 2013 Jun; 138(4):2451-9. PubMed ID: 23497908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of organic acid on cyanidin-3-O-glucoside oxidation mediated by iron in model Chinese bayberry wine.
    Zhang Z; Li J; Fan L; Duan Z
    Food Chem; 2020 Apr; 310():125980. PubMed ID: 31838371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of light, temperature and wine bottle colour on pigment enhancement in white wine.
    Dias DA; Smith TA; Ghiggino KP; Scollary GR
    Food Chem; 2012 Dec; 135(4):2934-41. PubMed ID: 22980893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoredox pathways of Cr(III)-tartrate complexes and their impacting factors.
    Dai R; Yu C; Gou J; Lan Y; Mao J
    J Hazard Mater; 2011 Feb; 186(2-3):2110-6. PubMed ID: 21255921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Light-induced changes in bottled white wine and underlying photochemical mechanisms.
    Grant-Preece P; Barril C; Schmidtke LM; Scollary GR; Clark AC
    Crit Rev Food Sci Nutr; 2017 Mar; 57(4):743-754. PubMed ID: 25879850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological and photochemical degradation rates of diethylenetriaminepentaacetic acid (DTPA) in the presence and absence of Fe(III).
    Metsärinne S; Rantanen P; Aksela R; Tuhkanen T
    Chemosphere; 2004 Apr; 55(3):379-88. PubMed ID: 14987936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ability of ferric nitrilotriacetate complex with three pH-dependent conformations to induce lipid peroxidation.
    Akai K; Tsuchiya K; Tokumura A; Kogure K; Ueno S; Shibata A; Tamaki T; Fukuzawa K
    Free Radic Res; 2004 Sep; 38(9):951-62. PubMed ID: 15621713
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fe(III) photocatalytic reduction of Cr(VI) by low-molecular-weight organic acids with alpha-OH.
    Sun J; Mao JD; Gong H; Lan Y
    J Hazard Mater; 2009 Sep; 168(2-3):1569-74. PubMed ID: 19372002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Fe(III)-ligand properties on effectiveness of modified photo-Fenton processes.
    Aplin R; Feitz AJ; Waite TD
    Water Sci Technol; 2001; 44(5):23-30. PubMed ID: 11695464
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of copper(II) in the bridging reactions of (+)-catechin by glyoxylic acid in a model white wine.
    Clark AC; Prenzler PD; Scollary GR
    J Agric Food Chem; 2003 Oct; 51(21):6204-10. PubMed ID: 14518945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production and Isomeric Distribution of Xanthylium Cation Pigments and Their Precursors in Wine-like Conditions: Impact of Cu(II), Fe(II), Fe(III), Mn(II), Zn(II), and Al(III).
    Guo A; Kontoudakis N; Scollary GR; Clark AC
    J Agric Food Chem; 2017 Mar; 65(11):2414-2425. PubMed ID: 28231705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Eliminating interference from iron(III) for ultraviolet absorbance measurements of dissolved organic matter.
    Doane TA; Horwáth WR
    Chemosphere; 2010 Mar; 78(11):1409-15. PubMed ID: 20092870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.