BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 21381789)

  • 1. Native fluorescence spectroscopic evaluation of chemotherapeutic effects on malignant cells using nonnegative matrix factorization analysis.
    Pu Y; Tang GC; Wang WB; Savage HE; Schantz SP; Alfano RR
    Technol Cancer Res Treat; 2011 Apr; 10(2):113-20. PubMed ID: 21381789
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods.
    Pu Y; Wang W; Yang Y; Alfano RR
    Appl Opt; 2013 Feb; 52(6):1293-301. PubMed ID: 23435002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo fluorescence spectra unmixing and autofluorescence removal by sparse nonnegative matrix factorization.
    Montcuquet AS; Hervé L; Navarro F; Dinten JM; Mars JI
    IEEE Trans Biomed Eng; 2011 Sep; 58(9):2554-65. PubMed ID: 21672672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonnegative matrix factorization: a blind spectra separation method for in vivo fluorescent optical imaging.
    Montcuquet AS; Hervé L; Navarro F; Dinten JM; Mars JI
    J Biomed Opt; 2010; 15(5):056009. PubMed ID: 21054103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key native fluorophores analysis of human breast cancer tissues using Gram-Schmidt subspace method.
    Pu Y; Sordillo LA; Yang Y; Alfano RR
    Opt Lett; 2014 Dec; 39(24):6787-90. PubMed ID: 25502997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel initialization method for nonnegative matrix factorization and its application in component recognition with three-dimensional fluorescence spectra.
    Yu S; Zhang Y; Liu W; Zhao N; Xiao X; Yin G
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():315-9. PubMed ID: 22070997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stokes shift spectroscopic analysis of multifluorophores for human cancer detection in breast and prostate tissues.
    Pu Y; Wang W; Yang Y; Alfano RR
    J Biomed Opt; 2013 Jan; 18(1):17005. PubMed ID: 23296086
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diagnostic potential of Stokes Shift spectroscopy of breast and prostate tissues-- a preliminary pilot study.
    Ebenezar J; Pu Y; Liu CH; Wang WB; Alfano RR
    Technol Cancer Res Treat; 2011 Apr; 10(2):153-61. PubMed ID: 21381793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autofluorescence spectroscopy of normal and malignant human breast cell lines.
    Palmer GM; Keely PJ; Breslin TM; Ramanujam N
    Photochem Photobiol; 2003 Nov; 78(5):462-9. PubMed ID: 14653577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterizing breast cancer tissues through the spectral correlation properties of polarized fluorescence.
    Gharekhan AH; Arora S; Mayya KB; Panigrahi PK; Sureshkumar MB; Pradhan A
    J Biomed Opt; 2008; 13(5):054063. PubMed ID: 19021441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detecting retinoic acid-induced biochemical alterations in squamous cell carcinoma using intrinsic fluorescence spectroscopy.
    Silberberg MB; Savage HE; Tang GC; Sacks PG; Alfano RR; Schantz SP
    Laryngoscope; 1994 Mar; 104(3 Pt 1):278-82. PubMed ID: 8127183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in fluorescence profiles from breast cancer tissues due to changes in relative tryptophan content via energy transfer: tryptophan content correlates with histologic grade and tumor size but not with lymph node metastases.
    Sordillo LA; Sordillo PP; Budansky Y; Pu Y; Alfano RR
    J Biomed Opt; 2014 Dec; 19(12):125002. PubMed ID: 25521053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of multiexcitation fluorescence and diffuse reflectance spectroscopy for the diagnosis of breast cancer (March 2003).
    Palmer GM; Zhu C; Breslin TM; Xu F; Gilchrist KW; Ramanujam N
    IEEE Trans Biomed Eng; 2003 Nov; 50(11):1233-42. PubMed ID: 14619993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stokes shift spectroscopy pilot study for cancerous and normal prostate tissues.
    Ebenezar J; Pu Y; Wang WB; Liu CH; Alfano RR
    Appl Opt; 2012 Jun; 51(16):3642-9. PubMed ID: 22695604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Autofluorescence and diffuse reflectance properties of malignant and benign breast tissues.
    Breslin TM; Xu F; Palmer GM; Zhu C; Gilchrist KW; Ramanujam N
    Ann Surg Oncol; 2004 Jan; 11(1):65-70. PubMed ID: 14699036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tryptophan as the fingerprint for distinguishing aggressiveness among breast cancer cell lines using native fluorescence spectroscopy.
    Zhang L; Pu Y; Xue J; Pratavieira S; Xu B; Achilefu S; Alfano RR
    J Biomed Opt; 2014 Mar; 19(3):37005. PubMed ID: 24676384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization and diagnosis of cancer by native fluorescence spectroscopy of human urine.
    Rajasekaran R; Aruna PR; Koteeswaran D; Padmanabhan L; Muthuvelu K; Rai RR; Thamilkumar P; Murali Krishna C; Ganesan S
    Photochem Photobiol; 2013; 89(2):483-91. PubMed ID: 22971002
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying metastatic ability of prostate cancer cell lines using native fluorescence spectroscopy and machine learning methods.
    Xue J; Pu Y; Smith J; Gao X; Wang C; Wu B
    Sci Rep; 2021 Jan; 11(1):2282. PubMed ID: 33500529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semi-Supervised Nonnegative Matrix Factorization of Wide-Field Fluorescence Microscopic Images for Tissue Diagnosis.
    Soman SM; Rekha CRP; Santhakumar H; Narendrakumar U; Jayasree RS
    Microsc Microanal; 2020 Jun; 26(3):419-428. PubMed ID: 32284074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-hierarchical nonnegative matrix factorization distinguishing the fluorescent targets from autofluorescence for fluorescence imaging.
    Huang S; Zhao Y; Qin B
    Biomed Eng Online; 2015 Dec; 14():116. PubMed ID: 26667020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.