These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 21381817)

  • 1. Growth modeling with nonignorable dropout: alternative analyses of the STAR*D antidepressant trial.
    Muthén B; Asparouhov T; Hunter AM; Leuchter AF
    Psychol Methods; 2011 Mar; 16(1):17-33. PubMed ID: 21381817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling longitudinal data with nonignorable dropouts using a latent dropout class model.
    Roy J
    Biometrics; 2003 Dec; 59(4):829-36. PubMed ID: 14969461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling missingness for time-to-event data: a case study in osteoporosis.
    Neuenschwander B; Branson M
    J Biopharm Stat; 2004 Nov; 14(4):1005-19. PubMed ID: 15587977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis.
    Blozis SA
    Behav Res Methods; 2024 Mar; 56(3):1953-1967. PubMed ID: 37221346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Step Approach for Analysis of Nonignorable Missing Outcomes in Longitudinal Regression: an Application to Upstate KIDS Study.
    Liu D; Yeung EH; McLain AC; Xie Y; Buck Louis GM; Sundaram R
    Paediatr Perinat Epidemiol; 2017 Sep; 31(5):468-478. PubMed ID: 28767145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pattern mixture models and latent class models for the analysis of multivariate longitudinal data with informative dropouts.
    Dantan E; Proust-Lima C; Letenneur L; Jacqmin-Gadda H
    Int J Biostat; 2008; 4(1):Article 14. PubMed ID: 22462120
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general class of pattern mixture models for nonignorable dropout with many possible dropout times.
    Roy J; Daniels MJ
    Biometrics; 2008 Jun; 64(2):538-45. PubMed ID: 17900312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity analyses for data missing at random versus missing not at random using latent growth modelling: a practical guide for randomised controlled trials.
    Staudt A; Freyer-Adam J; Ittermann T; Meyer C; Bischof G; John U; Baumann S
    BMC Med Res Methodol; 2022 Sep; 22(1):250. PubMed ID: 36153489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Latent Transition Analysis Model for Latent-State-Dependent Nonignorable Missingness.
    Sterba SK
    Psychometrika; 2016 Jun; 81(2):506-34. PubMed ID: 25697371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of pattern-mixture models in randomized clinical trials.
    Bunouf P; Molenberghs G
    Pharm Stat; 2016 Nov; 15(6):494-506. PubMed ID: 27658505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A pattern-mixture model with nonfuture dependence and shift in current missing values.
    Lu K; Chen C; Li D
    J Biopharm Stat; 2015; 25(3):548-69. PubMed ID: 24905193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adjusting for nonignorable missingness when estimating generalized additive models.
    Xie H
    Biom J; 2010 Apr; 52(2):186-200. PubMed ID: 20422637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Marginalized transition shared random effects models for longitudinal binary data with nonignorable dropout.
    Lee M; Lee K; Lee J
    Biom J; 2014 Mar; 56(2):230-42. PubMed ID: 24430985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treatment effects in randomized longitudinal trials with different types of nonignorable dropout.
    Yang M; Maxwell SE
    Psychol Methods; 2014 Jun; 19(2):188-210. PubMed ID: 24079928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounting for dropout reason in longitudinal studies with nonignorable dropout.
    Moore CM; MaWhinney S; Forster JE; Carlson NE; Allshouse A; Wang X; Routy JP; Conway B; Connick E
    Stat Methods Med Res; 2017 Aug; 26(4):1854-1866. PubMed ID: 26078357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structured framework for assessing sensitivity to missing data assumptions in longitudinal clinical trials.
    Mallinckrodt CH; Lin Q; Molenberghs M
    Pharm Stat; 2013; 12(1):1-6. PubMed ID: 23193075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Testing treatment effect in schizophrenia clinical trials with heavy patient dropout using latent class growth mixture models.
    Kong F; Chen YF
    Pharm Stat; 2016 Jul; 15(4):349-61. PubMed ID: 27169874
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analytic method for the placebo-based pattern-mixture model.
    Lu K
    Stat Med; 2014 Mar; 33(7):1134-45. PubMed ID: 24122822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Treatment comparison in randomized clinical trials with nonignorable missingness: A reverse regression approach.
    Zhang Z; Cheon K
    Stat Methods Med Res; 2017 Apr; 26(2):776-795. PubMed ID: 25411324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distressing adverse events after antidepressant switch in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) trial: influence of adverse events during initial treatment with citalopram on development of subsequent adverse events with an alternative antidepressant.
    Katz AJ; Dusetzina SB; Farley JF; Ellis AR; Gaynes BN; Castillo WC; Stürmer T; Hansen RA
    Pharmacotherapy; 2012 Mar; 32(3):234-43. PubMed ID: 22392456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.