BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 21382147)

  • 1. Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy.
    Kimura S; Bryan CG; Hallberg KB; Johnson DB
    Environ Microbiol; 2011 Aug; 13(8):2092-104. PubMed ID: 21382147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems.
    Rowe OF; Sánchez-España J; Hallberg KB; Johnson DB
    Environ Microbiol; 2007 Jul; 9(7):1761-71. PubMed ID: 17564609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities.
    Hallberg KB; Coupland K; Kimura S; Johnson DB
    Appl Environ Microbiol; 2006 Mar; 72(3):2022-30. PubMed ID: 16517651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microorganisms in subterranean acidic waters within Europe's deepest metal mine.
    Kay CM; Haanela A; Johnson DB
    Res Microbiol; 2014 Nov; 165(9):705-12. PubMed ID: 25063488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal and spatial variations in microbial community structure and diversity in the acid stream draining across an ongoing surface mining site.
    Tan GL; Shu WS; Zhou WH; Li XL; Lan CY; Huang LN
    FEMS Microbiol Ecol; 2009 Nov; 70(2):121-9. PubMed ID: 19678846
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of a novel Acidithiobacillus ferrivorans strain from the Chilean Altiplano: attachment and biofilm formation on pyrite at low temperature.
    Barahona S; Dorador C; Zhang R; Aguilar P; Sand W; Vera M; Remonsellez F
    Res Microbiol; 2014 Nov; 165(9):782-93. PubMed ID: 25111023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Culture-dependent hunt and characterization of iron-oxidizing bacteria in Baiyin Copper Mine, China, and their application in metals extraction.
    Sajjad W; Zheng G; Ma X; Rafiq M; Irfan M; Xu W; Ali B
    J Basic Microbiol; 2019 Mar; 59(3):323-336. PubMed ID: 30592309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of microbial "streamer" growths in an acidic, metal-contaminated stream draining an abandoned underground copper mine.
    Kay CM; Rowe OF; Rocchetti L; Coupland K; Hallberg KB; Johnson DB
    Life (Basel); 2013 Feb; 3(1):189-210. PubMed ID: 25371339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geomicrobiology of extremely acidic subsurface environments.
    Johnson DB
    FEMS Microbiol Ecol; 2012 Jul; 81(1):2-12. PubMed ID: 22224750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Iron Kinetics and Evolution of Microbial Populations in Low-pH, Ferrous Iron-Oxidizing Bioreactors.
    Jones RM; Johnson DB
    Environ Sci Technol; 2016 Aug; 50(15):8239-45. PubMed ID: 27377871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the microbial community in moderately acidic drainage from the Yanahara pyrite mine in Japan.
    Wang Y; Yasuda T; Sharmin S; Kanao T; Kamimura K
    Biosci Biotechnol Biochem; 2014; 78(7):1274-82. PubMed ID: 25229870
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Archaea dominate the microbial community in an ecosystem with low-to-moderate temperature and extreme acidity.
    Korzhenkov AA; Toshchakov SV; Bargiela R; Gibbard H; Ferrer M; Teplyuk AV; Jones DL; Kublanov IV; Golyshin PN; Golyshina OV
    Microbiome; 2019 Jan; 7(1):11. PubMed ID: 30691532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore.
    Wakeman K; Auvinen H; Johnson DB
    Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metal mobilization by iron- and sulfur-oxidizing bacteria in a multiple extreme mine tailings in the Atacama Desert, Chile.
    Korehi H; Blöthe M; Sitnikova MA; Dold B; Schippers A
    Environ Sci Technol; 2013 Mar; 47(5):2189-96. PubMed ID: 23373853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbiology of diverse acidic and non-acidic microhabitats within a sulfidic ore mine.
    Falteisek L; Cepička I
    Extremophiles; 2012 Nov; 16(6):911-22. PubMed ID: 23065060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium "Ferrovum myxofaciens".
    Johnson DB; Hallberg KB; Hedrich S
    Appl Environ Microbiol; 2014 Jan; 80(2):672-80. PubMed ID: 24242243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cultivation-dependent and cultivation-independent characterization of the microbial community in acid mine drainage associated with acidic Pb/Zn mine tailings at Lechang, Guangdong, China.
    Tan GL; Shu WS; Hallberg KB; Li F; Lan CY; Huang LN
    FEMS Microbiol Ecol; 2007 Jan; 59(1):118-26. PubMed ID: 17059483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The microbiology of acidic mine waters.
    Johnson DB; Hallberg KB
    Res Microbiol; 2003 Sep; 154(7):466-73. PubMed ID: 14499932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China.
    Xie X; Xiao S; He Z; Liu J; Qiu G
    J Appl Microbiol; 2007 Oct; 103(4):1227-38. PubMed ID: 17897227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine.
    Johnson DB; Rolfe S; Hallberg KB; Iversen E
    Environ Microbiol; 2001 Oct; 3(10):630-7. PubMed ID: 11722543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.