These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21382555)

  • 1. Requirement for Plk2 in orchestrated ras and rap signaling, homeostatic structural plasticity, and memory.
    Lee KJ; Lee Y; Rozeboom A; Lee JY; Udagawa N; Hoe HS; Pak DT
    Neuron; 2011 Mar; 69(5):957-73. PubMed ID: 21382555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of synaptic GTPase-activating protein (synGAP) by polo-like kinase (Plk2) alters the ratio of its GAP activity toward HRas, Rap1 and Rap2 GTPases.
    Walkup WG; Sweredoski MJ; Graham RL; Hess S; Kennedy MB
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1599-1604. PubMed ID: 30049443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opposing action of nuclear factor κB and Polo-like kinases determines a homeostatic end point for excitatory synaptic adaptation.
    Mihalas AB; Araki Y; Huganir RL; Meffert MK
    J Neurosci; 2013 Oct; 33(42):16490-501. PubMed ID: 24133254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ras and Rap control AMPA receptor trafficking during synaptic plasticity.
    Zhu JJ; Qin Y; Zhao M; Van Aelst L; Malinow R
    Cell; 2002 Aug; 110(4):443-55. PubMed ID: 12202034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ras and Rap Signal Bidirectional Synaptic Plasticity via Distinct Subcellular Microdomains.
    Zhang L; Zhang P; Wang G; Zhang H; Zhang Y; Yu Y; Zhang M; Xiao J; Crespo P; Hell JW; Lin L; Huganir RL; Zhu JJ
    Neuron; 2018 May; 98(4):783-800.e4. PubMed ID: 29706584
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ras and Rap signaling in synaptic plasticity and mental disorders.
    Stornetta RL; Zhu JJ
    Neuroscientist; 2011 Feb; 17(1):54-78. PubMed ID: 20431046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Critical role of CDK5 and Polo-like kinase 2 in homeostatic synaptic plasticity during elevated activity.
    Seeburg DP; Feliu-Mojer M; Gaiottino J; Pak DT; Sheng M
    Neuron; 2008 May; 58(4):571-83. PubMed ID: 18498738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plk2 Raps up Ras to subdue synapses.
    Lee KJ; Hoe HS; Pak DT
    Small GTPases; 2011 May; 2(3):162-166. PubMed ID: 21776418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The SNK and SPAR signaling pathway changes in hippocampal neurons treated with amyloid-beta peptide in vitro.
    Sui H; Zhan L; Niu X; Liang L; Li X
    Neuropeptides; 2017 Jun; 63():43-48. PubMed ID: 28400058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation of synaptic GTPase-activating protein (synGAP) by Ca2+/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (CDK5) alters the ratio of its GAP activity toward Ras and Rap GTPases.
    Walkup WG; Washburn L; Sweredoski MJ; Carlisle HJ; Graham RL; Hess S; Kennedy MB
    J Biol Chem; 2015 Feb; 290(8):4908-4927. PubMed ID: 25533468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plk2 attachment to NSF induces homeostatic removal of GluA2 during chronic overexcitation.
    Evers DM; Matta JA; Hoe HS; Zarkowsky D; Lee SH; Isaac JT; Pak DT
    Nat Neurosci; 2010 Oct; 13(10):1199-207. PubMed ID: 20802490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rac1 is a downstream effector of PKCα in structural synaptic plasticity.
    Tu X; Yasuda R; Colgan LA
    Sci Rep; 2020 Feb; 10(1):1777. PubMed ID: 32019972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasticity of dendritic spines: Molecular function and dysfunction in neurodevelopmental disorders.
    Nishiyama J
    Psychiatry Clin Neurosci; 2019 Sep; 73(9):541-550. PubMed ID: 31215705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plk2 promotes synaptic destabilization through disruption of N-cadherin adhesion complexes during homeostatic adaptation to hyperexcitation.
    Abdel-Ghani M; Lee Y; Akli LA; Moran M; Schneeweis A; Djemil S; El Choueiry R; Murtadha R; Pak DTS
    J Neurochem; 2023 Nov; 167(3):362-375. PubMed ID: 37654026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MINK and TNIK differentially act on Rap2-mediated signal transduction to regulate neuronal structure and AMPA receptor function.
    Hussain NK; Hsin H; Huganir RL; Sheng M
    J Neurosci; 2010 Nov; 30(44):14786-94. PubMed ID: 21048137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polo-like kinases in the nervous system.
    Seeburg DP; Pak D; Sheng M
    Oncogene; 2005 Jan; 24(2):292-8. PubMed ID: 15640845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MiR-134-dependent regulation of Pumilio-2 is necessary for homeostatic synaptic depression.
    Fiore R; Rajman M; Schwale C; Bicker S; Antoniou A; Bruehl C; Draguhn A; Schratt G
    EMBO J; 2014 Oct; 33(19):2231-46. PubMed ID: 25097251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GluN2B-Containing NMDA Receptors Regulate AMPA Receptor Traffic through Anchoring of the Synaptic Proteasome.
    Ferreira JS; Schmidt J; Rio P; Águas R; Rooyakkers A; Li KW; Smit AB; Craig AM; Carvalho AL
    J Neurosci; 2015 Jun; 35(22):8462-79. PubMed ID: 26041915
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperone-mediated specificity in Ras and Rap signaling.
    Azoulay-Alfaguter I; Strazza M; Mor A
    Crit Rev Biochem Mol Biol; 2015; 50(3):194-202. PubMed ID: 25488471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin and EGF receptors integrate the Ras and Rap signaling pathways.
    Pessin JE; Okada S
    Endocr J; 1999 Mar; 46 Suppl():S11-6. PubMed ID: 12054111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.