These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 21382825)

  • 1. Sensing and control of flow separation using plasma actuators.
    Corke TC; Bowles PO; He C; Matlis EH
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1459-75. PubMed ID: 21382825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The flow separation delay in the boundary layer by induced vortices.
    Chaudhry IA; Sultan T; Siddiqui FA; Farhan M; Asim M
    J Vis (Tokyo); 2017; 20(2):251-261. PubMed ID: 28515659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superposition of AC-DBD plasma actuator outputs for three-dimensional disturbance production in shear flows.
    Kurelek JW; Kotsonis M; Yarusevych S
    Exp Fluids; 2023; 64(4):84. PubMed ID: 37066429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The PELskin project-part V: towards the control of the flow around aerofoils at high angle of attack using a self-activated deployable flap.
    Rosti ME; Kamps L; Bruecker C; Omidyeganeh M; Pinelli A
    Meccanica; 2017; 52(8):1811-1824. PubMed ID: 28529384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of Sweeping Jet Actuator Parameters on Flow Separation Control.
    Koklu M
    AIAA J; 2018 Jan; 56(1):100-110. PubMed ID: 31395987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turbulent boundary-layer control with plasma actuators.
    Choi KS; Jukes T; Whalley R
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1443-58. PubMed ID: 21382824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of flexible surface hairs with near-wall turbulence.
    Brücker Ch
    J Phys Condens Matter; 2011 May; 23(18):184120. PubMed ID: 21508482
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack.
    Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ
    J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wind Tunnel Testing of Plasma Actuator with Two Mesh Electrodes to Boundary Layer Control at High Angle of Attack.
    Gnapowski E; Pytka J; Józwik J; Laskowski J; Michałowska J
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33430317
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drag reduction in turbulent boundary layers by in-plane wall motion.
    Quadrio M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1428-42. PubMed ID: 21382823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow Control around the UAS-S45 Pitching Airfoil Using a Dynamically Morphing Leading Edge (DMLE): A Numerical Study.
    Bashir M; Zonzini N; Botez RM; Ceruti A; Wong T
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36810382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitivity of forces to wall transpiration in flow past an aerofoil.
    Mao X
    Proc Math Phys Eng Sci; 2015 Dec; 471(2184):20150618. PubMed ID: 26807041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Investigation of the characteristics of the stagger electrodes dielectric barrier discharge plasmas in chord-wise direction].
    Li G; Li HM; Mu KJ; Zhang Y; Nie CQ; Zhu JQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Oct; 28(10):2209-13. PubMed ID: 19123374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance computing-based exploration of flow control with micro devices.
    Fujii K
    Philos Trans A Math Phys Eng Sci; 2014 Aug; 372(2022):20130326. PubMed ID: 25024414
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical Simulation of a Passive Control of the Flow Around an Aerofoil Using a Flexible, Self Adaptive Flaplet.
    Rosti ME; Omidyeganeh M; Pinelli A
    Flow Turbul Combust; 2018; 100(4):1111-1143. PubMed ID: 30069151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bi-directional flow sensor with a wide dynamic range for medical applications.
    Al-Salaymeh A; Jovanović J; Durst F
    Med Eng Phys; 2004 Oct; 26(8):623-37. PubMed ID: 15471690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the manipulation of flow and acoustic fields of a blunt trailing edge aerofoil by serrated leading edges.
    Hasheminejad SM; Chong TP; Lacagnina G; Joseph P; Kim JH; Choi KS; Omidyeganeh M; Pinelli A; Stalnov O
    J Acoust Soc Am; 2020 Jun; 147(6):3932. PubMed ID: 32611165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some aspects of aerodynamic flow control using synthetic-jet actuation.
    Glezer A
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1476-94. PubMed ID: 21382826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental investigation of expansive bending pipe flow separation control using a surface dielectric barrier discharge plasma actuator.
    Liu S; Liang H; Zong H; Yang H; Chen J; Zhang D; Su Z; Kong W
    Sci Prog; 2023; 106(4):368504231216832. PubMed ID: 38105488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.