These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 21382880)

  • 1. Application and evaluation of forecasting methods for municipal solid waste generation in an Eastern-European city.
    Rimaityte I; Ruzgas T; Denafas G; Racys V; Martuzevicius D
    Waste Manag Res; 2012 Jan; 30(1):89-98. PubMed ID: 21382880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China.
    Xu L; Gao P; Cui S; Liu C
    Waste Manag; 2013 Jun; 33(6):1324-31. PubMed ID: 23490364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis.
    Adamović VM; Antanasijević DZ; Ristić MĐ; Perić-Grujić AA; Pocajt VV
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):299-311. PubMed ID: 27718111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting of municipal solid waste generation using non-linear autoregressive (NAR) neural models.
    Sunayana ; Kumar S; Kumar R
    Waste Manag; 2021 Feb; 121():206-214. PubMed ID: 33360819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forecasting of municipal solid waste quantity in a developing country using multivariate grey models.
    Intharathirat R; Abdul Salam P; Kumar S; Untong A
    Waste Manag; 2015 May; 39():3-14. PubMed ID: 25704925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting municipal solid waste generation using prognostic tools and regression analysis.
    Ghinea C; Drăgoi EN; Comăniţă ED; Gavrilescu M; Câmpean T; Curteanu S; Gavrilescu M
    J Environ Manage; 2016 Nov; 182():80-93. PubMed ID: 27454099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis and forecasting of municipal solid waste in Nankana City using geo-spatial techniques.
    Mahmood S; Sharif F; Rahman AU; Khan AU
    Environ Monit Assess; 2018 Apr; 190(5):275. PubMed ID: 29644486
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting municipal solid waste in Lithuania by incorporating socioeconomic and geographical factors.
    Paulauskaite-Taraseviciene A; Raudonis V; Sutiene K
    Waste Manag; 2022 Mar; 140():31-39. PubMed ID: 35033802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterns of waste generation: A gradient boosting model for short-term waste prediction in New York City.
    Johnson NE; Ianiuk O; Cazap D; Liu L; Starobin D; Dobler G; Ghandehari M
    Waste Manag; 2017 Apr; 62():3-11. PubMed ID: 28216080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landfill area estimation based on integrated waste disposal options and solid waste forecasting using modified ANFIS model.
    Younes MK; Nopiah ZM; Basri NE; Basri H; Abushammala MF; Younes MY
    Waste Manag; 2016 Sep; 55():3-11. PubMed ID: 26522806
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of old and new municipal solid waste management systems in Denizli, Turkey.
    Ağdağ ON
    Waste Manag; 2009 Jan; 29(1):456-64. PubMed ID: 18346887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forecasting municipal solid waste generation using artificial intelligence modelling approaches.
    Abbasi M; El Hanandeh A
    Waste Manag; 2016 Oct; 56():13-22. PubMed ID: 27297046
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An optimisation model for regional integrated solid waste management II. Model application and sensitivity analyses.
    Najm MA; El-Fadel M; Ayoub G; El-Taha M; Al-Awar F
    Waste Manag Res; 2002 Feb; 20(1):46-54. PubMed ID: 12020095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inexact multi-objective dynamic model and its application in China for the management of municipal solid waste.
    Su J; Xi BD; Liu HL; Jiang YH; Warith MA
    Waste Manag; 2008 Dec; 28(12):2532-41. PubMed ID: 18572399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Life cycle analysis of Municipal Solid Waste management possibilities in Asturias, Spain.
    Rodríguez-Iglesias J; Marañón E; Castrillón L; Riestra P; Sastre H
    Waste Manag Res; 2003 Dec; 21(6):535-48. PubMed ID: 14986715
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling.
    Dyson B; Chang NB
    Waste Manag; 2005; 25(7):669-79. PubMed ID: 16009300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling and evaluating municipal solid waste management strategies in a mega-city: the case of Ho Chi Minh City.
    ThiKimOanh L; Bloemhof-Ruwaard JM; van Buuren JC; van der Vorst JG; Rulkens WH
    Waste Manag Res; 2015 Apr; 33(4):370-80. PubMed ID: 25739768
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the effectiveness of municipal solid waste management systems: an integrated cost-benefit analysis perspective with a financial cost modeling in Taiwan.
    Weng YC; Fujiwara T
    Waste Manag; 2011 Jun; 31(6):1393-406. PubMed ID: 21333520
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid model for the prediction of municipal solid waste generation in Hangzhou, China.
    Zhang Z; Zhang Y; Wu D
    Waste Manag Res; 2019 Aug; 37(8):781-792. PubMed ID: 31264528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined Municipal Solid Waste and biomass system optimization for district energy applications.
    Rentizelas AA; Tolis AI; Tatsiopoulos IP
    Waste Manag; 2014 Jan; 34(1):36-48. PubMed ID: 24140378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.