These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21383006)

  • 1. Molecular mechanism underlying phosphatidylinositol 4,5-bisphosphate-induced inhibition of SpIH channels.
    Flynn GE; Zagotta WN
    J Biol Chem; 2011 Apr; 286(17):15535-42. PubMed ID: 21383006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dual Regulation of Voltage-Sensitive Ion Channels by PIP(2).
    Rodríguez-Menchaca AA; Adney SK; Zhou L; Logothetis DE
    Front Pharmacol; 2012; 3():170. PubMed ID: 23055973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of cyclic nucleotide-regulated HCN channels by PIP(2) and receptors coupled to phospholipase C.
    Pian P; Bucchi A; Decostanzo A; Robinson RB; Siegelbaum SA
    Pflugers Arch; 2007 Oct; 455(1):125-45. PubMed ID: 17605039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and rearrangements in the carboxy-terminal region of SpIH channels.
    Flynn GE; Black KD; Islas LD; Sankaran B; Zagotta WN
    Structure; 2007 Jun; 15(6):671-82. PubMed ID: 17562314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two structural components in CNGA3 support regulation of cone CNG channels by phosphoinositides.
    Dai G; Peng C; Liu C; Varnum MD
    J Gen Physiol; 2013 Apr; 141(4):413-30. PubMed ID: 23530136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of gating and rundown of HCN hyperpolarization-activated channels by exogenous and endogenous PIP2.
    Pian P; Bucchi A; Robinson RB; Siegelbaum SA
    J Gen Physiol; 2006 Nov; 128(5):593-604. PubMed ID: 17074978
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm.
    Gauss R; Seifert R; Kaupp UB
    Nature; 1998 Jun; 393(6685):583-7. PubMed ID: 9634235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the molecular mechanism for hyperpolarization-dependent activation of HCN channels.
    Flynn GE; Zagotta WN
    Proc Natl Acad Sci U S A; 2018 Aug; 115(34):E8086-E8095. PubMed ID: 30076228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The expression and role of hyperpolarization-activated and cyclic nucleotide-gated channels in endocrine anterior pituitary cells.
    Kretschmannova K; Kucka M; Gonzalez-Iglesias AE; Stojilkovic SS
    Mol Endocrinol; 2012 Jan; 26(1):153-64. PubMed ID: 22135067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pacemaking by HCN channels requires interaction with phosphoinositides.
    Zolles G; Klöcker N; Wenzel D; Weisser-Thomas J; Fleischmann BK; Roeper J; Fakler B
    Neuron; 2006 Dec; 52(6):1027-36. PubMed ID: 17178405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Do phosphatidylinositides modulate vertebrate phototransduction?
    Womack KB; Gordon SE; He F; Wensel TG; Lu CC; Hilgemann DW
    J Neurosci; 2000 Apr; 20(8):2792-9. PubMed ID: 10751430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage-controlled gating at the intracellular entrance to a hyperpolarization-activated cation channel.
    Rothberg BS; Shin KS; Phale PS; Yellen G
    J Gen Physiol; 2002 Jan; 119(1):83-91. PubMed ID: 11773240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow conformational changes of the voltage sensor during the mode shift in hyperpolarization-activated cyclic-nucleotide-gated channels.
    Bruening-Wright A; Larsson HP
    J Neurosci; 2007 Jan; 27(2):270-8. PubMed ID: 17215386
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for modulation and agonist specificity of HCN pacemaker channels.
    Zagotta WN; Olivier NB; Black KD; Young EC; Olson R; Gouaux E
    Nature; 2003 Sep; 425(6954):200-5. PubMed ID: 12968185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels.
    Loussouarn G; Park KH; Bellocq C; Baró I; Charpentier F; Escande D
    EMBO J; 2003 Oct; 22(20):5412-21. PubMed ID: 14532114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. S4 movement in a mammalian HCN channel.
    Vemana S; Pandey S; Larsson HP
    J Gen Physiol; 2004 Jan; 123(1):21-32. PubMed ID: 14676284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hysteresis in the voltage dependence of HCN channels: conversion between two modes affects pacemaker properties.
    Männikkö R; Pandey S; Larsson HP; Elinder F
    J Gen Physiol; 2005 Mar; 125(3):305-26. PubMed ID: 15710913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural changes during HCN channel gating defined by high affinity metal bridges.
    Kwan DC; Prole DL; Yellen G
    J Gen Physiol; 2012 Sep; 140(3):279-91. PubMed ID: 22930802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localization of the ATP/phosphatidylinositol 4,5 diphosphate-binding site to a 39-amino acid region of the carboxyl terminus of the ATP-regulated K+ channel Kir1.1.
    Dong K; Tang L; MacGregor GG; Hebert SC
    J Biol Chem; 2002 Dec; 277(51):49366-73. PubMed ID: 12381730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual effect of phosphatidylinositol (4,5)-bisphosphate PIP(2) on Shaker K(+) [corrected] channels.
    Abderemane-Ali F; Es-Salah-Lamoureux Z; Delemotte L; Kasimova MA; Labro AJ; Snyders DJ; Fedida D; Tarek M; Baró I; Loussouarn G
    J Biol Chem; 2012 Oct; 287(43):36158-67. PubMed ID: 22932893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.