BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 21383134)

  • 1. Crystallographic snapshots of the complete reaction cycle of nicotine degradation by an amine oxidase of the monoamine oxidase (MAO) family.
    Kachalova G; Decker K; Holt A; Bartunik HD
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4800-5. PubMed ID: 21383134
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure analysis of free and substrate-bound 6-hydroxy-L-nicotine oxidase from Arthrobacter nicotinovorans.
    Kachalova GS; Bourenkov GP; Mengesdorf T; Schenk S; Maun HR; Burghammer M; Riekel C; Decker K; Bartunik HD
    J Mol Biol; 2010 Feb; 396(3):785-99. PubMed ID: 20006620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of the Flavoprotein L-Hydroxynicotine Oxidase: Kinetic Mechanism, Substrate Specificity, Reaction Product, and Roles of Active-Site Residues.
    Fitzpatrick PF; Chadegani F; Zhang S; Roberts KM; Hinck CS
    Biochemistry; 2016 Feb; 55(4):697-703. PubMed ID: 26744768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxidative cyclization of
    Lahham M; Pavkov-Keller T; Fuchs M; Niederhauser J; Chalhoub G; Daniel B; Kroutil W; Gruber K; Macheroux P
    J Biol Chem; 2018 Nov; 293(44):17021-17032. PubMed ID: 30194285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of FAD reduction and role of active site residues His-225 and Tyr-259 in Arthrobacter globiformis dimethylglycine oxidase: analysis of mutant structure and catalytic function.
    Basran J; Fullerton S; Leys D; Scrutton NS
    Biochemistry; 2006 Sep; 45(37):11151-61. PubMed ID: 16964976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of putrescine oxidase from Rhodococcus erythropolis.
    Kopacz MM; Heuts DP; Fraaije MW
    FEBS J; 2014 Oct; 281(19):4384-93. PubMed ID: 25060191
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of Flavoprotein l-6-Hydroxynicotine Oxidase: pH and Solvent Isotope Effects and Identification of Key Active Site Residues.
    Fitzpatrick PF; Chadegani F; Zhang S; Dougherty V
    Biochemistry; 2017 Feb; 56(6):869-875. PubMed ID: 28080034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallography Coupled with Kinetic Analysis Provides Mechanistic Underpinnings of a Nicotine-Degrading Enzyme.
    Tararina MA; Xue S; Smith LC; Muellers SN; Miranda PO; Janda KD; Allen KN
    Biochemistry; 2018 Jul; 57(26):3741-3751. PubMed ID: 29812904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic characterization of tyramine oxidase of Arthrobacter species.
    Wouters J; Perpète P; Hayen P; Anceau N; Durant F
    Biochem Mol Biol Int; 1994 Mar; 32(4):737-43. PubMed ID: 8038724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An active site mutation in 6-hydroxy-l-Nicotine oxidase from Arthrobacter nicotinovorans changes the substrate specificity in favor of (S)-nicotine.
    Deay DO; Colvert KK; Gao F; Seibold S; Goyal P; Aillon D; Petillo PA; Richter ML
    Arch Biochem Biophys; 2020 Oct; 692():108520. PubMed ID: 32750321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss of serotonin oxidation as a component of the altered substrate specificity in the Y444F mutant of recombinant human liver MAO A.
    Nandigama RK; Miller JR; Edmondson DE
    Biochemistry; 2001 Dec; 40(49):14839-46. PubMed ID: 11732903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-based redesign of cofactor binding in putrescine oxidase.
    Kopacz MM; Rovida S; van Duijn E; Fraaije MW; Mattevi A
    Biochemistry; 2011 May; 50(19):4209-17. PubMed ID: 21486042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A lysine conserved in the monoamine oxidase family is involved in oxidation of the reduced flavin in mouse polyamine oxidase.
    Henderson Pozzi M; Fitzpatrick PF
    Arch Biochem Biophys; 2010 Jun; 498(2):83-8. PubMed ID: 20417173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of a serine proximal to the C(4a) and N(5) flavin atoms for hydride transfer in choline oxidase.
    Yuan H; Gadda G
    Biochemistry; 2011 Feb; 50(5):770-9. PubMed ID: 21174412
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-activity relationships in the oxidation of para-substituted benzylamine analogues by recombinant human liver monoamine oxidase A.
    Miller JR; Edmondson DE
    Biochemistry; 1999 Oct; 38(41):13670-83. PubMed ID: 10521274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Horizontal gene transfer involved in the convergent evolution of the plasmid-encoded enantioselective 6-hydroxynicotine oxidases.
    Schenk S; Decker K
    J Mol Evol; 1999 Feb; 48(2):178-86. PubMed ID: 9929386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in flavoenzyme-dependent amine oxidations: a comparison of polyamine oxidase and monoamine oxidase.
    Binda C; Mattevi A; Edmondson DE
    J Biol Chem; 2002 Jul; 277(27):23973-6. PubMed ID: 12015330
    [No Abstract]   [Full Text] [Related]  

  • 18. Structural Analysis Provides Mechanistic Insight into Nicotine Oxidoreductase from Pseudomonas putida.
    Tararina MA; Janda KD; Allen KN
    Biochemistry; 2016 Dec; 55(48):6595-6598. PubMed ID: 27933790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanistic aspects of the covalent flavoprotein dimethylglycine oxidase of Arthrobacter globiformis studied by stopped-flow spectrophotometry.
    Basran J; Bhanji N; Basran A; Nietlispach D; Mistry S; Meskys R; Scrutton NS
    Biochemistry; 2002 Apr; 41(14):4733-43. PubMed ID: 11926836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of the "aromatic cage" in human monoamine oxidase B: structures and catalytic properties of Tyr435 mutant proteins.
    Li M; Binda C; Mattevi A; Edmondson DE
    Biochemistry; 2006 Apr; 45(15):4775-84. PubMed ID: 16605246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.