These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 21383174)

  • 1. The circadian oscillator gene GIGANTEA mediates a long-term response of the Arabidopsis thaliana circadian clock to sucrose.
    Dalchau N; Baek SJ; Briggs HM; Robertson FC; Dodd AN; Gardner MJ; Stancombe MA; Haydon MJ; Stan GB; Gonçalves JM; Webb AA
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):5104-9. PubMed ID: 21383174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sucrose and Ethylene Signaling Interact to Modulate the Circadian Clock.
    Haydon MJ; Mielczarek O; Frank A; Román Á; Webb AAR
    Plant Physiol; 2017 Oct; 175(2):947-958. PubMed ID: 28778922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photosynthetic entrainment of the Arabidopsis thaliana circadian clock.
    Haydon MJ; Mielczarek O; Robertson FC; Hubbard KE; Webb AA
    Nature; 2013 Oct; 502(7473):689-92. PubMed ID: 24153186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LIP1 Regulates the Plant Circadian Oscillator by Modulating the Function of the Clock Component GIGANTEA.
    Hajdu A; Nyári D; Terecskei K; Gyula P; Ádám É; Dobos O; Mérai Z; Kozma-Bognár L
    Cells; 2024 Sep; 13(17):. PubMed ID: 39273073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GIGANTEA acts in blue light signaling and has biochemically separable roles in circadian clock and flowering time regulation.
    Martin-Tryon EL; Kreps JA; Harmer SL
    Plant Physiol; 2007 Jan; 143(1):473-86. PubMed ID: 17098855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Circadian Clock Influences the Long-Term Water Use Efficiency of Arabidopsis.
    Simon NML; Graham CA; Comben NE; Hetherington AM; Dodd AN
    Plant Physiol; 2020 May; 183(1):317-330. PubMed ID: 32179629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian control of root elongation and C partitioning in Arabidopsis thaliana.
    Yazdanbakhsh N; Sulpice R; Graf A; Stitt M; Fisahn J
    Plant Cell Environ; 2011 Jun; 34(6):877-894. PubMed ID: 21332506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gene regulatory network models in response to sugars in the plant circadian system.
    Ohara T; Hearn TJ; Webb AAR; Satake A
    J Theor Biol; 2018 Nov; 457():137-151. PubMed ID: 30125577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The metabolic sensor AKIN10 modulates the Arabidopsis circadian clock in a light-dependent manner.
    Shin J; Sánchez-Villarreal A; Davis AM; Du SX; Berendzen KW; Koncz C; Ding Z; Li C; Davis SJ
    Plant Cell Environ; 2017 Jul; 40(7):997-1008. PubMed ID: 28054361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic regulation of circadian clocks.
    Haydon MJ; Hearn TJ; Bell LJ; Hannah MA; Webb AA
    Semin Cell Dev Biol; 2013 May; 24(5):414-21. PubMed ID: 23538134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superoxide is promoted by sucrose and affects amplitude of circadian rhythms in the evening.
    Román Á; Li X; Deng D; Davey JW; James S; Graham IA; Haydon MJ
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33674383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis.
    Mizoguchi T; Wright L; Fujiwara S; Cremer F; Lee K; Onouchi H; Mouradov A; Fowler S; Kamada H; Putterill J; Coupland G
    Plant Cell; 2005 Aug; 17(8):2255-70. PubMed ID: 16006578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A circadian clock-regulated toggle switch explains AtGRP7 and AtGRP8 oscillations in Arabidopsis thaliana.
    Schmal C; Reimann P; Staiger D
    PLoS Comput Biol; 2013; 9(3):e1002986. PubMed ID: 23555221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox rhythm reinforces the circadian clock to gate immune response.
    Zhou M; Wang W; Karapetyan S; Mwimba M; Marqués J; Buchler NE; Dong X
    Nature; 2015 Jul; 523(7561):472-6. PubMed ID: 26098366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From a repressilator-based circadian clock mechanism to an external coincidence model responsible for photoperiod and temperature control of plant architecture in Arabodopsis thaliana.
    Yamashino T
    Biosci Biotechnol Biochem; 2013; 77(1):10-6. PubMed ID: 23291766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. AKIN10 activity as a cellular link between metabolism and circadian-clock entrainment in Arabidopsis thaliana.
    Sánchez-Villarreal A; Davis AM; Davis SJ
    Plant Signal Behav; 2018 Mar; 13(3):e1411448. PubMed ID: 29231782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological and Genetic Dissection of Sucrose Inputs to the
    Philippou K; Ronald J; Sánchez-Villarreal A; Davis AM; Davis SJ
    Genes (Basel); 2019 May; 10(5):. PubMed ID: 31052578
    [TBL] [Abstract][Full Text] [Related]  

  • 18. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
    Park MJ; Kwon YJ; Gil KE; Park CM
    BMC Plant Biol; 2016 May; 16(1):114. PubMed ID: 27207270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochrome-interacting factor 4 and 5 (PIF4 and PIF5) activate the homeobox ATHB2 and auxin-inducible IAA29 genes in the coincidence mechanism underlying photoperiodic control of plant growth of Arabidopsis thaliana.
    Kunihiro A; Yamashino T; Nakamichi N; Niwa Y; Nakanishi H; Mizuno T
    Plant Cell Physiol; 2011 Aug; 52(8):1315-29. PubMed ID: 21666227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoperiod sensing of the circadian clock is controlled by EARLY FLOWERING 3 and GIGANTEA.
    Anwer MU; Davis A; Davis SJ; Quint M
    Plant J; 2020 Mar; 101(6):1397-1410. PubMed ID: 31694066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.