These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 21383196)
1. Host plant shifts affect a major defense enzyme in Chrysomela lapponica. Kirsch R; Vogel H; Muck A; Reichwald K; Pasteels JM; Boland W Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4897-901. PubMed ID: 21383196 [TBL] [Abstract][Full Text] [Related]
2. To be or not to be convergent in salicin-based defence in chrysomeline leaf beetle larvae: evidence from Phratora vitellinae salicyl alcohol oxidase. Kirsch R; Vogel H; Muck A; Vilcinskas A; Pasteels JM; Boland W Proc Biol Sci; 2011 Nov; 278(1722):3225-32. PubMed ID: 21429930 [TBL] [Abstract][Full Text] [Related]
3. Salicyl alcohol oxidase of the chemical defense secretion of two chrysomelid leaf beetles. Molecular and functional characterization of two new members of the glucose-methanol-choline oxidoreductase gene family. Michalski C; Mohagheghi H; Nimtz M; Pasteels J; Ober D J Biol Chem; 2008 Jul; 283(28):19219-28. PubMed ID: 18482980 [TBL] [Abstract][Full Text] [Related]
4. Glucose and glucose esters in the larval secretion of Chrysomela lapponica; selectivity of the glucoside import system from host plant leaves. Tolzin-Banasch K; Dagvadorj E; Sammer U; Kunert M; Kirsch R; Ploss K; Pasteels JM; Boland W J Chem Ecol; 2011 Feb; 37(2):195-204. PubMed ID: 21301937 [TBL] [Abstract][Full Text] [Related]
5. Composition of larval secretion ofChrysomela lapponica (Coleoptera, Chrysomelidae) and its dependence on host plant. Hilker M; Schulz S J Chem Ecol; 1994 May; 20(5):1075-93. PubMed ID: 24242305 [TBL] [Abstract][Full Text] [Related]
6. Characterization of an extracellular salicyl alcohol oxidase from larval defensive secretions of Chrysomela populi and Phratora vitellinae (Chrysomelina). Brückmann M; Termonia A; Pasteels JM; Hartmann T Insect Biochem Mol Biol; 2002 Nov; 32(11):1517-23. PubMed ID: 12530219 [TBL] [Abstract][Full Text] [Related]
7. Conflicting mitochondrial and nuclear phylogeographic signals and evolution of host-plant shifts in the boreo-montane leaf beetle Chrysomela lapponica. Mardulyn P; Othmezouri N; Mikhailov YE; Pasteels JM Mol Phylogenet Evol; 2011 Dec; 61(3):686-96. PubMed ID: 21930219 [TBL] [Abstract][Full Text] [Related]
8. Sequestration of plant-derived phenolglucosides by larvae of the leaf beetle Chrysomela lapponica: thioglucosides as mechanistic probes. Kuhn J; Pettersson EM; Feld BK; Nie L; Tolzin-Banasch K; M'Rabet SM; Pasteels J; Boland W J Chem Ecol; 2007 Jan; 33(1):5-24. PubMed ID: 17080305 [TBL] [Abstract][Full Text] [Related]
9. A subset of chemosensory genes differs between two populations of a specialized leaf beetle after host plant shift. Wang D; Pentzold S; Kunert M; Groth M; Brandt W; Pasteels JM; Boland W; Burse A Ecol Evol; 2018 Aug; 8(16):8055-8075. PubMed ID: 30250684 [TBL] [Abstract][Full Text] [Related]
10. Host plant effects on parasitoid attack on the leaf beetle Chrysomela lapponica. Zvereva EL; Rank NE Oecologia; 2003 Apr; 135(2):258-67. PubMed ID: 12698348 [TBL] [Abstract][Full Text] [Related]
11. Tissue-specific profiling of membrane proteins in the salicin sequestering juveniles of the herbivorous leaf beetle, Chrysomela populi. Schmidt L; Wielsch N; Wang D; Boland W; Burse A Insect Biochem Mol Biol; 2019 Jun; 109():81-91. PubMed ID: 30922827 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial activity of exocrine glandular secretion of Chrysomela larvae. Gross J; Podsiadlowski L; Hilker M J Chem Ecol; 2002 Feb; 28(2):317-31. PubMed ID: 11925070 [TBL] [Abstract][Full Text] [Related]
13. Fly parasitoid Megaselia opacicornis uses defensive secretions of the leaf beetle Chrysomela lapponica to locate its host. Zvereva EL; Rank NE Oecologia; 2004 Aug; 140(3):516-22. PubMed ID: 15146325 [TBL] [Abstract][Full Text] [Related]
14. Inter- and Intrapopulation Variability in the Composition of Larval Defensive Secretions of Willow-Feeding Populations of the Leaf Beetle Chrysomela lapponica. Geiselhardt S; Hilker M; Müller F; Kozlov MV; Zvereva EL J Chem Ecol; 2015 Mar; 41(3):276-86. PubMed ID: 25804685 [TBL] [Abstract][Full Text] [Related]
15. A beta-glucosidase of an insect herbivore determines both toxicity and deterrence of a dandelion defense metabolite. Huber M; Roder T; Irmisch S; Riedel A; Gablenz S; Fricke J; Rahfeld P; Reichelt M; Paetz C; Liechti N; Hu L; Bont Z; Meng Y; Huang W; Robert CA; Gershenzon J; Erb M Elife; 2021 Oct; 10():. PubMed ID: 34632981 [TBL] [Abstract][Full Text] [Related]
16. Host-plant effects on larval survival of a salicin-using leaf beetle Chrysomela aeneicollis Schaeffer (Coleoptera: Chrysomelidae). Rank NE Oecologia; 1994 Apr; 97(3):342-353. PubMed ID: 28313629 [TBL] [Abstract][Full Text] [Related]
17. Precise RNAi-mediated silencing of metabolically active proteins in the defence secretions of juvenile leaf beetles. Bodemann RR; Rahfeld P; Stock M; Kunert M; Wielsch N; Groth M; Frick S; Boland W; Burse A Proc Biol Sci; 2012 Oct; 279(1745):4126-34. PubMed ID: 22874750 [TBL] [Abstract][Full Text] [Related]
18. ABC transporter functions as a pacemaker for sequestration of plant glucosides in leaf beetles. Strauss AS; Peters S; Boland W; Burse A Elife; 2013 Dec; 2():e01096. PubMed ID: 24302568 [TBL] [Abstract][Full Text] [Related]
19. Selective transport systems mediate sequestration of plant glucosides in leaf beetles: a molecular basis for adaptation and evolution. Kuhn J; Pettersson EM; Feld BK; Burse A; Termonia A; Pasteels JM; Boland W Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13808-13. PubMed ID: 15365181 [TBL] [Abstract][Full Text] [Related]
20. Host plant preference based on salicylate chemistry in a willow leaf beetle (Chrysomela aeneicollis). Rank NE Oecologia; 1992 Apr; 90(1):95-101. PubMed ID: 28312276 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]