These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 21383414)

  • 1. Disease liability prediction from large scale genotyping data using classifiers with a reject option.
    Quevedo JR; Bahamonde A; Pérez-Enciso M; Luaces O
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(1):88-97. PubMed ID: 21383414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide association studies.
    Yang TH; Kon M; DeLisi C
    Methods Mol Biol; 2013; 939():233-51. PubMed ID: 23192550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robust genome-wide scan statistic of the Wellcome Trust Case-Control Consortium.
    Joo J; Kwak M; Ahn K; Zheng G
    Biometrics; 2009 Dec; 65(4):1115-22. PubMed ID: 19432787
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the Genetic Patterns of Complex Diseases via the Integrative Genome-Wide Approach.
    Teng B; Yang C; Liu J; Cai Z; Wan X
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(3):557-64. PubMed ID: 27295639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in GWAS analysis: the impact of genotype calling algorithm inconsistencies.
    Miclaus K; Chierici M; Lambert C; Zhang L; Vega S; Hong H; Yin S; Furlanello C; Wolfinger R; Goodsaid F
    Pharmacogenomics J; 2010 Aug; 10(4):324-35. PubMed ID: 20676070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Follow-up analysis of genome-wide association data identifies novel loci for type 1 diabetes.
    Grant SF; Qu HQ; Bradfield JP; Marchand L; Kim CE; Glessner JT; Grabs R; Taback SP; Frackelton EC; Eckert AW; Annaiah K; Lawson ML; Otieno FG; Santa E; Shaner JL; Smith RM; Skraban R; Imielinski M; Chiavacci RM; Grundmeier RW; Stanley CA; Kirsch SE; Waggott D; Paterson AD; Monos DS; ; Polychronakos C; Hakonarson H
    Diabetes; 2009 Jan; 58(1):290-5. PubMed ID: 18840781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting disease risk using bootstrap ranking and classification algorithms.
    Manor O; Segal E
    PLoS Comput Biol; 2013; 9(8):e1003200. PubMed ID: 23990773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective genetic-risk prediction using mixed models.
    Golan D; Rosset S
    Am J Hum Genet; 2014 Oct; 95(4):383-93. PubMed ID: 25279982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Translating genome wide association study results to associations among common diseases: in silico study with an electronic medical record.
    Anand V; Rosenman MB; Downs SM
    Int J Med Inform; 2013 Sep; 82(9):864-74. PubMed ID: 23743324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hidden two-locus disease association pattern in genome-wide association studies.
    Yang C; Wan X; Yang Q; Xue H; Tang NL; Yu W
    BMC Bioinformatics; 2011 May; 12():156. PubMed ID: 21569557
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting causal genes from genome-wide association studies via functionally coherent subnetworks.
    Taşan M; Musso G; Hao T; Vidal M; MacRae CA; Roth FP
    Nat Methods; 2015 Feb; 12(2):154-9. PubMed ID: 25532137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide searching of rare genetic variants in WTCCC data.
    Feng T; Zhu X
    Hum Genet; 2010 Sep; 128(3):269-80. PubMed ID: 20549515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SLINGER: large-scale learning for predicting gene expression.
    Vervier K; Michaelson JJ
    Sci Rep; 2016 Dec; 6():39360. PubMed ID: 27996030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detecting two-locus associations allowing for interactions in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Oct; 26(20):2517-25. PubMed ID: 20736343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predictive rule inference for epistatic interaction detection in genome-wide association studies.
    Wan X; Yang C; Yang Q; Xue H; Tang NL; Yu W
    Bioinformatics; 2010 Jan; 26(1):30-7. PubMed ID: 19880365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using genome-wide pathway analysis to unravel the etiology of complex diseases.
    Elbers CC; van Eijk KR; Franke L; Mulder F; van der Schouw YT; Wijmenga C; Onland-Moret NC
    Genet Epidemiol; 2009 Jul; 33(5):419-31. PubMed ID: 19235186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathway-based analysis of genomic variation data.
    Atias N; Istrail S; Sharan R
    Curr Opin Genet Dev; 2013 Dec; 23(6):622-6. PubMed ID: 24209906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Classifier-based approach to identify genetic similarities between diseases.
    Schaub MA; Kaplow IM; Sirota M; Do CB; Butte AJ; Batzoglou S
    Bioinformatics; 2009 Jun; 25(12):i21-9. PubMed ID: 19477990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HapBoost: a fast approach to boosting haplotype association analyses in genome-wide association studies.
    Wan X; Yang C; Yang Q; Zhao H; Yu W
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(1):207-12. PubMed ID: 23702557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of variability in GWAS with CRLMM genotyping algorithm on WTCCC coronary artery disease.
    Zhang L; Yin S; Miclaus K; Chierici M; Vega S; Lambert C; Hong H; Wolfinger RD; Furlanello C; Goodsaid F
    Pharmacogenomics J; 2010 Aug; 10(4):347-54. PubMed ID: 20676072
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.