BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21383812)

  • 1. Q-factor enhancement in a one-dimensional photonic crystal cavity with embedded planar plasmonic metamaterials.
    Li Y; Tao X; Chen H; Tam WY
    J Opt Soc Am A Opt Image Sci Vis; 2011 Mar; 28(3):314-7. PubMed ID: 21383812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Q photonic nanocavity in a two-dimensional photonic crystal.
    Akahane Y; Asano T; Song BS; Noda S
    Nature; 2003 Oct; 425(6961):944-7. PubMed ID: 14586465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling and fabrication of GaAs photonic-crystal cavities for cavity quantum electrodynamics.
    Khankhoje UK; Kim SH; Richards BC; Hendrickson J; Sweet J; Olitzky JD; Khitrova G; Gibbs HM; Scherer A
    Nanotechnology; 2010 Feb; 21(6):065202. PubMed ID: 20057040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gain and plasmon dynamics in active negative-index metamaterials.
    Wuestner S; Pusch A; Tsakmakidis KL; Hamm JM; Hess O
    Philos Trans A Math Phys Eng Sci; 2011 Sep; 369(1950):3525-50. PubMed ID: 21807726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid photonic-plasmonic nano-cavity with ultra-high Q/V.
    Zhang H; Liu YC; Wang C; Zhang N; Lu C
    Opt Lett; 2020 Sep; 45(17):4794-4797. PubMed ID: 32870859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dielectric constant tuning on a photonic cavity frequency and Q-factor.
    Shlafman M; Bayn I; Salzman J
    Opt Express; 2010 Jul; 18(15):15907-16. PubMed ID: 20720974
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmon induced transparency in cascaded π-shaped metamaterials.
    Cetin AE; Artar A; Turkmen M; Yanik AA; Altug H
    Opt Express; 2011 Nov; 19(23):22607-18. PubMed ID: 22109141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of strong coupling through transmission modification of a cavity-coupled photonic crystal waveguide.
    Bose R; Sridharan D; Solomon GS; Waks E
    Opt Express; 2011 Mar; 19(6):5398-409. PubMed ID: 21445179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q-factor (>750,000).
    Gai X; Luther-Davies B; White TP
    Opt Express; 2012 Jul; 20(14):15503-15. PubMed ID: 22772245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strong coupling of plasmonic bright and dark modes with two eigenmodes of a photonic crystal cavity.
    Meng F; Cao L; Karalis A; Gu H; Thomson MD; Roskos HG
    Opt Express; 2023 Nov; 31(24):39624-39637. PubMed ID: 38041279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-loss surface-plasmonic nanobeam cavities.
    Kim MK; Lee SH; Choi M; Ahn BH; Park N; Lee YH; Min B
    Opt Express; 2010 May; 18(11):11089-96. PubMed ID: 20588966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanobeam photonic crystal cavity quantum dot laser.
    Gong Y; Ellis B; Shambat G; Sarmiento T; Harris JS; Vuckovic J
    Opt Express; 2010 Apr; 18(9):8781-9. PubMed ID: 20588722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor.
    Portalupi SL; Galli M; Reardon C; Krauss TF; O'Faolain L; Andreani LC; Gerace D
    Opt Express; 2010 Jul; 18(15):16064-73. PubMed ID: 20720991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Square lattice photonic crystal surface mode lasers.
    Lu TW; Lu SP; Chiu LH; Lee PT
    Opt Express; 2010 Dec; 18(25):26461-8. PubMed ID: 21164996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonlocal collective ultrastrong interaction of plasmonic metamaterials and photons in a terahertz photonic crystal cavity.
    Meng F; Thomson MD; Klug B; Čibiraitė D; Ul-Islam Q; Roskos HG
    Opt Express; 2019 Aug; 27(17):24455-24468. PubMed ID: 31510334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of electromagnetically induced transparency in metamaterials.
    Xu H; Lu Y; Lee Y; Ham BS
    Opt Express; 2010 Aug; 18(17):17736-47. PubMed ID: 20721160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity.
    Jeon SW; Han JK; Song BS; Noda S
    Opt Express; 2010 Aug; 18(18):19361-6. PubMed ID: 20940831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of amplification and light generation in one-dimensional photonic crystal using a multiwavelength transfer matrix approach.
    Szczepański P; Osuch T; Jaroszewicz Z
    Appl Opt; 2009 Oct; 48(28):5401-6. PubMed ID: 19798381
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly-dispersive electromagnetic induced transparency in planar symmetric metamaterials.
    Lu X; Shi J; Liu R; Guan C
    Opt Express; 2012 Jul; 20(16):17581-90. PubMed ID: 23038311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.