BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 21384013)

  • 1. A graphene-based Au(111) platform for electrochemical biosensing based catalytic recycling of products on gold nanoflowers.
    Liu B; Tang D; Tang J; Su B; Li Q; Chen G
    Analyst; 2011 Jun; 136(11):2218-20. PubMed ID: 21384013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts.
    Tang J; Tang D; Su B; Huang J; Qiu B; Chen G
    Biosens Bioelectron; 2011 Mar; 26(7):3219-26. PubMed ID: 21216587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ loading of well-dispersed gold nanoparticles on two-dimensional graphene oxide/SiO2 composite nanosheets and their catalytic properties.
    Zhu C; Han L; Hu P; Dong S
    Nanoscale; 2012 Mar; 4(5):1641-6. PubMed ID: 22286065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-assisted dual amplification strategy for the fabrication of sensitive amperometric immunosensor.
    Liu K; Zhang JJ; Wang C; Zhu JJ
    Biosens Bioelectron; 2011 Apr; 26(8):3627-32. PubMed ID: 21388800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzyme-free electrochemical immunosensor configured with Au-Pd nanocrystals and N-doped graphene sheets for sensitive detection of AFP.
    Zhao L; Li S; He J; Tian G; Wei Q; Li H
    Biosens Bioelectron; 2013 Nov; 49():222-5. PubMed ID: 23770392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Peroxidase-Like Properties of Graphene-Hemin-Composite Decorated with Au Nanoflowers as Electrochemical Aptamer Biosensor for the Detection of K562 Leukemia Cancer Cells.
    Liu J; Cui M; Niu L; Zhou H; Zhang S
    Chemistry; 2016 Dec; 22(50):18001-18008. PubMed ID: 27781354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensitive electrochemical immunoassay of carcinoembryonic antigen with signal dual-amplification using glucose oxidase and an artificial catalase.
    Tang J; Tang D; Li Q; Su B; Qiu B; Chen G
    Anal Chim Acta; 2011 Jul; 697(1-2):16-22. PubMed ID: 21641413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An electrochemical immunosensor using p-aminophenol redox cycling by NADH on a self-assembled monolayer and ferrocene-modified Au electrodes.
    Kwon SJ; Yang H; Jo K; Kwak J
    Analyst; 2008 Nov; 133(11):1599-604. PubMed ID: 18936839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical immunosensor with graphene/gold nanoparticles platform and ferrocene derivatives label.
    Wang G; Gang X; Zhou X; Zhang G; Huang H; Zhang X; Wang L
    Talanta; 2013 Jan; 103():75-80. PubMed ID: 23200360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection.
    Cheng Y; Yuan R; Chai Y; Niu H; Cao Y; Liu H; Bai L; Yuan Y
    Anal Chim Acta; 2012 Oct; 745():137-42. PubMed ID: 22938618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly sensitive electrochemical detection of cocaine on graphene/AuNP modified electrode via catalytic redox-recycling amplification.
    Jiang B; Wang M; Chen Y; Xie J; Xiang Y
    Biosens Bioelectron; 2012 Feb; 32(1):305-8. PubMed ID: 22204778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Label-free amperometric immunosensor for the detection of human serum chorionic gonadotropin based on nanoporous gold and graphene.
    Li R; Wu D; Li H; Xu C; Wang H; Zhao Y; Cai Y; Wei Q; Du B
    Anal Biochem; 2011 Jul; 414(2):196-201. PubMed ID: 21435334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibrillar networks of glycyrrhizic acid for hybrid nanomaterials with catalytic features.
    Saha A; Adamcik J; Bolisetty S; Handschin S; Mezzenga R
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5408-12. PubMed ID: 25759108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A label-free electrochemical immunoassay for carcinoembryonic antigen (CEA) based on gold nanoparticles (AuNPs) and nonconductive polymer film.
    Tang H; Chen J; Nie L; Kuang Y; Yao S
    Biosens Bioelectron; 2007 Jan; 22(6):1061-7. PubMed ID: 16797959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene-modified interdigitated array electrode: fabrication, characterization, and electrochemical immunoassay application.
    Ueno Y; Furukawa K; Hayashi K; Takamura M; Hibino H; Tamechika E
    Anal Sci; 2013; 29(1):55-60. PubMed ID: 23303085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene electrochemistry: fabricating amperometric biosensors.
    Brownson DA; Banks CE
    Analyst; 2011 May; 136(10):2084-9. PubMed ID: 21461417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amperometric immunosensor for prolactin hormone measurement using antibodies loaded on a nano-Au monolayer modified ionic liquid carbon paste electrode.
    Beitollahi H; Nekooei S; Torkzadeh-Mahani M
    Talanta; 2018 Oct; 188():701-707. PubMed ID: 30029435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoporous gold electrode as a platform for the construction of an electrochemical DNA hybridization biosensor.
    Ahangar LE; Mehrgardi MA
    Biosens Bioelectron; 2012; 38(1):252-7. PubMed ID: 22727625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide.
    Zhou M; Zhai Y; Dong S
    Anal Chem; 2009 Jul; 81(14):5603-13. PubMed ID: 19522529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of the gold-catalyzed deposition of silver on graphite screen-printed electrodes and their application to the development of impedimetric immunosensors.
    Vig A; Muñoz-Berbel X; Radoi A; Cortina-Puig M; Marty JL
    Talanta; 2009 Dec; 80(2):942-6. PubMed ID: 19836576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.