These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1355 related articles for article (PubMed ID: 21384027)
1. A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Goerigk L; Grimme S Phys Chem Chem Phys; 2011 Apr; 13(14):6670-88. PubMed ID: 21384027 [TBL] [Abstract][Full Text] [Related]
2. Efficient and Accurate Double-Hybrid-Meta-GGA Density Functionals-Evaluation with the Extended GMTKN30 Database for General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Goerigk L; Grimme S J Chem Theory Comput; 2011 Feb; 7(2):291-309. PubMed ID: 26596152 [TBL] [Abstract][Full Text] [Related]
3. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Goerigk L; Hansen A; Bauer C; Ehrlich S; Najibi A; Grimme S Phys Chem Chem Phys; 2017 Dec; 19(48):32184-32215. PubMed ID: 29110012 [TBL] [Abstract][Full Text] [Related]
4. Benchmarking density functional methods against the S66 and S66x8 datasets for non-covalent interactions. Goerigk L; Kruse H; Grimme S Chemphyschem; 2011 Dec; 12(17):3421-33. PubMed ID: 22113958 [TBL] [Abstract][Full Text] [Related]
5. Appropriate description of intermolecular interactions in the methane hydrates: an assessment of DFT methods. Liu Y; Zhao J; Li F; Chen Z J Comput Chem; 2013 Jan; 34(2):121-31. PubMed ID: 22949382 [TBL] [Abstract][Full Text] [Related]
6. Theoretical thermodynamics for large molecules: walking the thin line between accuracy and computational cost. Schwabe T; Grimme S Acc Chem Res; 2008 Apr; 41(4):569-79. PubMed ID: 18324790 [TBL] [Abstract][Full Text] [Related]
7. Density-functional approaches to noncovalent interactions: a comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Burns LA; Vázquez-Mayagoitia A; Sumpter BG; Sherrill CD J Chem Phys; 2011 Feb; 134(8):084107. PubMed ID: 21361527 [TBL] [Abstract][Full Text] [Related]
8. Highly accurate first-principles benchmark data sets for the parametrization and validation of density functional and other approximate methods. Derivation of a robust, generally applicable, double-hybrid functional for thermochemistry and thermochemical kinetics. Karton A; Tarnopolsky A; Lamère JF; Schatz GC; Martin JM J Phys Chem A; 2008 Dec; 112(50):12868-86. PubMed ID: 18714947 [TBL] [Abstract][Full Text] [Related]
9. Accurate calculation of the heats of formation for large main group compounds with spin-component scaled MP2 methods. Grimme S J Phys Chem A; 2005 Apr; 109(13):3067-77. PubMed ID: 16833631 [TBL] [Abstract][Full Text] [Related]
10. Benchmark Database for Ylidic Bond Dissociation Energies and Its Use for Assessments of Electronic Structure Methods. Zhao Y; Ng HT; Peverati R; Truhlar DG J Chem Theory Comput; 2012 Aug; 8(8):2824-34. PubMed ID: 26592123 [TBL] [Abstract][Full Text] [Related]
11. Benchmark quantum-chemical calculations on a complete set of rotameric families of the DNA sugar-phosphate backbone and their comparison with modern density functional theory. Mládek A; Krepl M; Svozil D; Cech P; Otyepka M; Banáš P; Zgarbová M; Jurečka P; Sponer J Phys Chem Chem Phys; 2013 May; 15(19):7295-310. PubMed ID: 23575975 [TBL] [Abstract][Full Text] [Related]
12. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. Zhao Y; Schultz NE; Truhlar DG J Chem Theory Comput; 2006 Mar; 2(2):364-82. PubMed ID: 26626525 [TBL] [Abstract][Full Text] [Related]
13. Performance of meta-GGA Functionals on General Main Group Thermochemistry, Kinetics, and Noncovalent Interactions. Hao P; Sun J; Xiao B; Ruzsinszky A; Csonka GI; Tao J; Glindmeyer S; Perdew JP J Chem Theory Comput; 2013 Jan; 9(1):355-63. PubMed ID: 26589038 [TBL] [Abstract][Full Text] [Related]
14. A General Database for Main Group Thermochemistry, Kinetics, and Noncovalent Interactions - Assessment of Common and Reparameterized (meta-)GGA Density Functionals. Goerigk L; Grimme S J Chem Theory Comput; 2010 Jan; 6(1):107-26. PubMed ID: 26614324 [TBL] [Abstract][Full Text] [Related]
15. How to compute isomerization energies of organic molecules with quantum chemical methods. Grimme S; Steinmetz M; Korth M J Org Chem; 2007 Mar; 72(6):2118-26. PubMed ID: 17286442 [TBL] [Abstract][Full Text] [Related]
16. How Do DFT-DCP, DFT-NL, and DFT-D3 Compare for the Description of London-Dispersion Effects in Conformers and General Thermochemistry? Goerigk L J Chem Theory Comput; 2014 Mar; 10(3):968-80. PubMed ID: 26580176 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of a combination of local hybrid functionals with DFT-D3 corrections for the calculation of thermochemical and kinetic data. Theilacker K; Arbuznikov AV; Bahmann H; Kaupp M J Phys Chem A; 2011 Aug; 115(32):8990-6. PubMed ID: 21749093 [TBL] [Abstract][Full Text] [Related]
18. Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Schwabe T; Grimme S Phys Chem Chem Phys; 2007 Jul; 9(26):3397-406. PubMed ID: 17664963 [TBL] [Abstract][Full Text] [Related]
19. Effects of London dispersion on the isomerization reactions of large organic molecules: a density functional benchmark study. Huenerbein R; Schirmer B; Moellmann J; Grimme S Phys Chem Chem Phys; 2010 Jul; 12(26):6940-8. PubMed ID: 20461239 [TBL] [Abstract][Full Text] [Related]
20. Spin-component-scaled double hybrids: An extensive search for the best fifth-rung functionals blending DFT and perturbation theory. Kozuch S; Martin JM J Comput Chem; 2013 Oct; 34(27):2327-44. PubMed ID: 23983204 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]