These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 21384128)

  • 1. Renouncing electroneutrality is not free of charge: switching on electrogenicity in a Na+-coupled phosphate cotransporter.
    Bacconi A; Virkki LV; Biber J; Murer H; Forster IC
    Proc Natl Acad Sci U S A; 2005 Aug; 102(35):12606-11. PubMed ID: 16113079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct functional properties of two electrogenic isoforms of the SLC34 Na-Pi cotransporter.
    Mizutani N; Okochi Y; Okamura Y
    Physiol Rep; 2019 Jul; 7(14):e14156. PubMed ID: 31342668
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine mutagenesis reveals novel structure-function features within the predicted third extracellular loop of the type IIa Na(+)/P(i) cotransporter.
    Lambert G; Forster IC; Stange G; Köhler K; Biber J; Murer H
    J Gen Physiol; 2001 Jun; 117(6):533-46. PubMed ID: 11382804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New insights in the genetic variant spectrum of SLC34A2 in pulmonary alveolar microlithiasis; a systematic review.
    Jönsson ÅLM; Hilberg O; Simonsen U; Christensen JH; Bendstrup E
    Orphanet J Rare Dis; 2023 May; 18(1):130. PubMed ID: 37259144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative Stress Related to Plasmalemmal and Mitochondrial Phosphate Transporters in Vascular Calcification.
    Nguyen NT; Nguyen TT; Park KS
    Antioxidants (Basel); 2022 Mar; 11(3):. PubMed ID: 35326144
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal Phosphorus Absorption in Chronic Kidney Disease.
    Stremke ER; Hill Gallant KM
    Nutrients; 2018 Sep; 10(10):. PubMed ID: 30249044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The molecular mechanism of SLC34 proteins: insights from two decades of transport assays and structure-function studies.
    Forster IC
    Pflugers Arch; 2019 Jan; 471(1):15-42. PubMed ID: 30244375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural models of the NaPi-II sodium-phosphate cotransporters.
    Fenollar-Ferrer C; Forrest LR
    Pflugers Arch; 2019 Jan; 471(1):43-52. PubMed ID: 30175376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the first sodium binding site of the phosphate cotransporter NaPi-IIa (SLC34A1).
    Fenollar-Ferrer C; Forster IC; Patti M; Knoepfel T; Werner A; Forrest LR
    Biophys J; 2015 May; 108(10):2465-2480. PubMed ID: 25992725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlating charge movements with local conformational changes of a Na(+)-coupled cotransporter.
    Patti M; Forster IC
    Biophys J; 2014 Apr; 106(8):1618-29. PubMed ID: 24739161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural fold and binding sites of the human Na⁺-phosphate cotransporter NaPi-II.
    Fenollar-Ferrer C; Patti M; Knöpfel T; Werner A; Forster IC; Forrest LR
    Biophys J; 2014 Mar; 106(6):1268-79. PubMed ID: 24655502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SLC34 family of sodium-dependent phosphate transporters.
    Wagner CA; Hernando N; Forster IC; Biber J
    Pflugers Arch; 2014 Jan; 466(1):139-53. PubMed ID: 24352629
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage- and substrate-dependent interactions between sites in putative re-entrant domains of a Na(+)-coupled phosphate cotransporter.
    Ghezzi C; Meinild AK; Murer H; Forster IC
    Pflugers Arch; 2011 Jun; 461(6):645-63. PubMed ID: 21384128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cation Interactions and Membrane Potential Induce Conformational Changes in NaPi-IIb.
    Patti M; Fenollar-Ferrer C; Werner A; Forrest LR; Forster IC
    Biophys J; 2016 Sep; 111(5):973-88. PubMed ID: 27602725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conferring electrogenicity to the electroneutral phosphate cotransporter NaPi-IIc (SLC34A3) reveals an internal cation release step.
    Patti M; Ghezzi C; Forster IC
    Pflugers Arch; 2013 Sep; 465(9):1261-79. PubMed ID: 23515872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-function relations of the first and fourth extracellular linkers of the type IIa Na+/Pi cotransporter: II. Substrate interaction and voltage dependency of two functionally important sites.
    Ehnes C; Forster IC; Bacconi A; Kohler K; Biber J; Murer H
    J Gen Physiol; 2004 Nov; 124(5):489-503. PubMed ID: 15504899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the Na-P(i) cotransport systems.
    Werner A; Kinne RK
    Am J Physiol Regul Integr Comp Physiol; 2001 Feb; 280(2):R301-12. PubMed ID: 11208556
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.