BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 21384172)

  • 1. Prism-based spectral imaging of single-molecule fluorescence from gold-nanoparticle/fluorophore complex.
    Sonehara T; Sakai T; Haga T; Fujita T; Takahashi S
    J Fluoresc; 2011 Jul; 21(4):1805-11. PubMed ID: 21384172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prism-based spectral imaging of four species of single-molecule fluorophores by using one excitation laser.
    Haga T; Sonehara T; Fujita T; Takahashi S
    J Fluoresc; 2013 May; 23(3):591-7. PubMed ID: 23471629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping the fluorescence performance of a photochromic-fluorescent system coupled with gold nanoparticles at the single-molecule-single-particle level.
    Simoncelli S; Roberti MJ; Araoz B; Bossi ML; Aramendía PF
    J Am Chem Soc; 2014 May; 136(19):6878-80. PubMed ID: 24766343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous four-color imaging of single molecule fluorophores using dichroic mirrors and four charge-coupled devices.
    Haga T; Sonehara T; Sakai T; Anazawa T; Fujita T; Takahashi S
    Rev Sci Instrum; 2011 Feb; 82(2):023701. PubMed ID: 21361595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toehold-mediated internal control to probe the near-field interaction between the metallic nanoparticle and the fluorophore.
    Ang YS; Yung LY
    Nanoscale; 2014 Nov; 6(21):12515-23. PubMed ID: 25238596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A terbium-based metal-organic framework@gold nanoparticle system as a fluorometric probe for aptamer based determination of adenosine triphosphate.
    Qu F; Sun C; Lv X; You J
    Mikrochim Acta; 2018 Jul; 185(8):359. PubMed ID: 29978289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A DNAzyme-gold nanoparticle probe for uranyl ion in living cells.
    Wu P; Hwang K; Lan T; Lu Y
    J Am Chem Soc; 2013 Apr; 135(14):5254-7. PubMed ID: 23531046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral properties of single gold nanoparticles in close proximity to biological fluorophores excited by 2-photon excitation.
    Anzalone A; Gabriel M; Estrada LC; Gratton E
    PLoS One; 2015; 10(4):e0124975. PubMed ID: 25909648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of adenosine triphosphate based on the use of fluorescent terbium(III) organic frameworks and aptamer modified gold nanoparticles.
    Sun C; Zhao S; Qu F; Han W; You J
    Mikrochim Acta; 2019 Dec; 187(1):34. PubMed ID: 31814046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical performance of molecular beacons on surface immobilized gold nanoparticles of varying size and density.
    Uddayasankar U; Krull UJ
    Anal Chim Acta; 2013 Nov; 803():113-22. PubMed ID: 24216204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Photon DNAzyme-Gold Nanoparticle Probe for Imaging Intracellular Metal Ions.
    Yang C; Yin X; Huan SY; Chen L; Hu XX; Xiong MY; Chen K; Zhang XB
    Anal Chem; 2018 Mar; 90(5):3118-3123. PubMed ID: 29409318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distance-dependent interactions between gold nanoparticles and fluorescent molecules with DNA as tunable spacers.
    Chhabra R; Sharma J; Wang H; Zou S; Lin S; Yan H; Lindsay S; Liu Y
    Nanotechnology; 2009 Dec; 20(48):485201. PubMed ID: 19880983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly.
    Wang S; Sun J; Gao F
    Analyst; 2015 Jun; 140(12):4001-6. PubMed ID: 25919909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Luminescent Gold Nanoparticles with Size-Independent Emission.
    Liu J; Duchesne PN; Yu M; Jiang X; Ning X; Vinluan RD; Zhang P; Zheng J
    Angew Chem Int Ed Engl; 2016 Jul; 55(31):8894-8. PubMed ID: 27348584
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of low quantum yield fluorophores and improved imaging times using metallic nanoparticles.
    Estrada LC; Roberti MJ; Simoncelli S; Levi V; Aramendía PF; Martínez OE
    J Phys Chem B; 2012 Feb; 116(7):2306-13. PubMed ID: 22235949
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Plug and Play" logic gate construction based on chemically triggered fluorescence switching of gold nanoparticles conjugated with Cy3-tagged aptamer.
    Zhang Y; Li CW; Zhou L; Chen Z; Yi C
    Mikrochim Acta; 2020 Jul; 187(8):437. PubMed ID: 32647943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and thermal responsiveness of self-assembled gold nanoclusters.
    Ren S; Lim SK; Gradecak S
    Chem Commun (Camb); 2010 Sep; 46(34):6246-8. PubMed ID: 20697641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced detection of gold nanoparticles in agarose gel electrophoresis.
    Hasenoehrl C; Alexander CM; Azzarelli NN; Dabrowiak JC
    Electrophoresis; 2012 Apr; 33(8):1251-4. PubMed ID: 22589102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates.
    Zhang L; Hu D; Salmain M; Liedberg B; Boujday S
    Talanta; 2019 Nov; 204():875-881. PubMed ID: 31357376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold nanoparticle-based detection of dopamine based on fluorescence resonance energy transfer between a 4-(4-dialkylaminostyryl)pyridinium derived fluorophore and citrate-capped gold nanoparticles.
    Peng J; Zhou N; Zhong Y; Su Y; Zhao L; Chang YT
    Mikrochim Acta; 2019 Aug; 186(9):618. PubMed ID: 31410617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.