BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 21384268)

  • 1. A medical software system for volumetric analysis of cerebral pathologies in magnetic resonance imaging (MRI) data.
    Egger J; Kappus C; Freisleben B; Nimsky C
    J Med Syst; 2012 Aug; 36(4):2097-109. PubMed ID: 21384268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pituitary adenoma volumetry with 3D Slicer.
    Egger J; Kapur T; Nimsky C; Kikinis R
    PLoS One; 2012; 7(12):e51788. PubMed ID: 23240062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatially varying accuracy and reproducibility of prostate segmentation in magnetic resonance images using manual and semiautomated methods.
    Shahedi M; Cool DW; Romagnoli C; Bauman GS; Bastian-Jordan M; Gibson E; Rodrigues G; Ahmad B; Lock M; Fenster A; Ward AD
    Med Phys; 2014 Nov; 41(11):113503. PubMed ID: 25370674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic segmentation of left and right cerebral hemispheres from MRI brain volumes using the graph cuts algorithm.
    Liang L; Rehm K; Woods RP; Rottenberg DA
    Neuroimage; 2007 Feb; 34(3):1160-70. PubMed ID: 17150376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Automatic Segmentation Algorithms for the Subthalamic Nucleus.
    Polanski WH; Zolal A; Sitoci-Ficici KH; Hiepe P; Schackert G; Sobottka SB
    Stereotact Funct Neurosurg; 2020; 98(4):256-262. PubMed ID: 32369819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automatic intra-subject registration-based segmentation of abdominal fat from water-fat MRI.
    Joshi AA; Hu HH; Leahy RM; Goran MI; Nayak KS
    J Magn Reson Imaging; 2013 Feb; 37(2):423-30. PubMed ID: 23011805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactive-cut: Real-time feedback segmentation for translational research.
    Egger J; Lüddemann T; Schwarzenberg R; Freisleben B; Nimsky C
    Comput Med Imaging Graph; 2014 Jun; 38(4):285-95. PubMed ID: 24613389
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context.
    Isambert A; Dhermain F; Bidault F; Commowick O; Bondiau PY; Malandain G; Lefkopoulos D
    Radiother Oncol; 2008 Apr; 87(1):93-9. PubMed ID: 18155791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IDH1 mutation prediction using MR-based radiomics in glioblastoma: comparison between manual and fully automated deep learning-based approach of tumor segmentation.
    Choi Y; Nam Y; Lee YS; Kim J; Ahn KJ; Jang J; Shin NY; Kim BS; Jeon SS
    Eur J Radiol; 2020 Jul; 128():109031. PubMed ID: 32417712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Clinical Evaluation of a Multiparametric Deep Learning Model for Glioblastoma Segmentation Using Heterogeneous Magnetic Resonance Imaging Data From Clinical Routine.
    Perkuhn M; Stavrinou P; Thiele F; Shakirin G; Mohan M; Garmpis D; Kabbasch C; Borggrefe J
    Invest Radiol; 2018 Nov; 53(11):647-654. PubMed ID: 29863600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive model initialization and deformation for automatic segmentation of T1-weighted brain MRI data.
    Wu Z; Paulsen KD; Sullivan JM
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):1128-31. PubMed ID: 15977742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic 3D segmentation and characterization of brain tissues in multiparametric MR image sequences.
    Handels H
    Medinfo; 1995; 8 Pt 1():696-700. PubMed ID: 8591302
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information.
    Klein S; van der Heide UA; Lips IM; van Vulpen M; Staring M; Pluim JP
    Med Phys; 2008 Apr; 35(4):1407-17. PubMed ID: 18491536
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation propagation of the aorta in real-time phase contrast MRI using nonrigid registration.
    Odille F; Steeden JA; Muthurangu V; Atkinson D
    J Magn Reson Imaging; 2011 Jan; 33(1):232-8. PubMed ID: 21182145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy and reproducibility of a novel semi-automatic segmentation technique for MR volumetry of the pituitary gland.
    Renz DM; Hahn HK; Schmidt P; Rexilius J; Lentschig M; Pfeil A; Sauner D; Fitzek C; Mentzel HJ; Kaiser WA; Reichenbach JR; Böttcher J
    Neuroradiology; 2011 Apr; 53(4):233-44. PubMed ID: 20563571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST.
    Mulder ER; de Jong RA; Knol DL; van Schijndel RA; Cover KS; Visser PJ; Barkhof F; Vrenken H;
    Neuroimage; 2014 May; 92():169-81. PubMed ID: 24521851
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymorph segmentation representation for medical image computing.
    Pinter C; Lasso A; Fichtinger G
    Comput Methods Programs Biomed; 2019 Apr; 171():19-26. PubMed ID: 30902247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-automatic segmentation software for quantitative clinical brain glioblastoma evaluation.
    Zhu Y; Young GS; Xue Z; Huang RY; You H; Setayesh K; Hatabu H; Cao F; Wong ST
    Acad Radiol; 2012 Aug; 19(8):977-85. PubMed ID: 22591720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Segmentation of pituitary adenoma: a graph-based method vs. a balloon inflation method.
    Egger J; Zukić D; Freisleben B; Kolb A; Nimsky C
    Comput Methods Programs Biomed; 2013 Jun; 110(3):268-78. PubMed ID: 23266223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic brain tissue segmentation in fetal MRI using convolutional neural networks.
    Khalili N; Lessmann N; Turk E; Claessens N; Heus R; Kolk T; Viergever MA; Benders MJNL; Išgum I
    Magn Reson Imaging; 2019 Dec; 64():77-89. PubMed ID: 31181246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.