BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 21384562)

  • 1. QSAR modeling of nanomaterials.
    Burello E; Worth AP
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(3):298-306. PubMed ID: 21384562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional micro/nanostructures: simple synthesis and application in sensors, fuel cells, and gene delivery.
    Guo S; Wang E
    Acc Chem Res; 2011 Jul; 44(7):491-500. PubMed ID: 21612197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR modeling using chirality descriptors derived from molecular topology.
    Golbraikh A; Tropsha A
    J Chem Inf Comput Sci; 2003; 43(1):144-54. PubMed ID: 12546547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a general quantum-chemical descriptor for steric effects: density functional theory based QSAR study of herbicidal sulfonylurea analogues.
    Xi Z; Yu Z; Niu C; Ban S; Yang G
    J Comput Chem; 2006 Oct; 27(13):1571-6. PubMed ID: 16868987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative structure-property relationship modeling of diverse materials properties.
    Le T; Epa VC; Burden FR; Winkler DA
    Chem Rev; 2012 May; 112(5):2889-919. PubMed ID: 22251444
    [No Abstract]   [Full Text] [Related]  

  • 7. Quantitative structure-activity relationship for cyclic imide derivatives of protoporphyrinogen oxidase inhibitors: a study of quantum chemical descriptors from density functional theory.
    Wan J; Zhang L; Yang G; Zhan CG
    J Chem Inf Comput Sci; 2004; 44(6):2099-105. PubMed ID: 15554680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Methods for applying the quantitative structure-activity relationship paradigm.
    Esposito EX; Hopfinger AJ; Madura JD
    Methods Mol Biol; 2004; 275():131-214. PubMed ID: 15141113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of MOLMAP approach for QSAR modeling of various biological activities using substituent electronic descriptors.
    Hemmateenejad B; Mehdipour AR; Miri R; Shamsipur M
    J Comput Chem; 2009 Oct; 30(13):2001-9. PubMed ID: 19130500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation criteria for the quality of published experimental data on nanomaterials and their usefulness for QSAR modelling.
    Lubinski L; Urbaszek P; Gajewicz A; Cronin MT; Enoch SJ; Madden JC; Leszczynska D; Leszczynski J; Puzyn T
    SAR QSAR Environ Res; 2013; 24(12):995-1008. PubMed ID: 24313439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-bio effects: interaction of nanomaterials with cells.
    Cheng LC; Jiang X; Wang J; Chen C; Liu RS
    Nanoscale; 2013 May; 5(9):3547-69. PubMed ID: 23532468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-activity relationship modeling of juvenile hormone mimetic compounds for Culex pipiens larvae, with a discussion of descriptor-thinning methods.
    Basak SC; Natarajan R; Mills D; Hawkins DM; Kraker JJ
    J Chem Inf Model; 2006; 46(1):65-77. PubMed ID: 16426041
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional quantitative structure activity relationship computational approaches for prediction of human in vitro intrinsic clearance.
    Ekins S; Obach RS
    J Pharmacol Exp Ther; 2000 Nov; 295(2):463-73. PubMed ID: 11046077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer activity of selected phenolic compounds: QSAR studies using ridge regression and neural networks.
    Nandi S; Vracko M; Bagchi MC
    Chem Biol Drug Des; 2007 Nov; 70(5):424-36. PubMed ID: 17949360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toward the development of "nano-QSARs": advances and challenges.
    Puzyn T; Leszczynska D; Leszczynski J
    Small; 2009 Nov; 5(22):2494-509. PubMed ID: 19787675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative structure-activity relationship (QSAR) for a series of novel cannabinoid derivatives using descriptors derived from semi-empirical quantum-chemical calculations.
    Ferreira AM; Krishnamurthy M; Moore BM; Finkelstein D; Bashford D
    Bioorg Med Chem; 2009 Mar; 17(6):2598-606. PubMed ID: 19250829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local and global quantitative structure-activity relationship modeling and prediction for the baseline toxicity.
    Yuan H; Wang Y; Cheng Y
    J Chem Inf Model; 2007; 47(1):159-69. PubMed ID: 17238261
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel inhibitors of human histone deacetylase (HDAC) identified by QSAR modeling of known inhibitors, virtual screening, and experimental validation.
    Tang H; Wang XS; Huang XP; Roth BL; Butler KV; Kozikowski AP; Jung M; Tropsha A
    J Chem Inf Model; 2009 Feb; 49(2):461-76. PubMed ID: 19182860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antimalarial activity: a QSAR modeling using CODESSA PRO software.
    Katritzky AR; Kulshyn OV; Stoyanova-Slavova I; Dobchev DA; Kuanar M; Fara DC; Karelson M
    Bioorg Med Chem; 2006 Apr; 14(7):2333-57. PubMed ID: 16426851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors.
    Papa E; Dearden JC; Gramatica P
    Chemosphere; 2007 Feb; 67(2):351-8. PubMed ID: 17109926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.