These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 21384716)

  • 1. Microwave heating of pure copper powder with varying particle size and porosity.
    Mondal A; Agrawal D; Upadhyaya A
    J Microw Power Electromagn Energy; 2009; 43(1):5-10. PubMed ID: 21384716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave sintering of W-18Cu and W-7Ni-3Cu alloys.
    Mondal A; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2009; 43(1):11-6. PubMed ID: 21384717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of particle size and relative density on powdery Fe3O4 microwave heating.
    Hayashi M; Yokoyama Y; Nagata K
    J Microw Power Electromagn Energy; 2010; 44(4):198-206. PubMed ID: 21721468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy.
    Padmavathi C; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2012; 46(3):115-27. PubMed ID: 24432468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering.
    Eugene WW; Gupta M
    J Microw Power Electromagn Energy; 2010; 44(1):14-27. PubMed ID: 21721326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying microwave technology to sintering dental zirconia.
    Almazdi AA; Khajah HM; Monaco EA; Kim H
    J Prosthet Dent; 2012 Nov; 108(5):304-9. PubMed ID: 23107238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microwave sintering process model.
    Peng H; Tinga WR; Sundararaj U; Eadie RL
    J Microw Power Electromagn Energy; 2003; 38(4):243-58. PubMed ID: 15323110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Ni-Nb-Sn metallic glassy alloy powder and its microwave-induced sintering behavior.
    Xie G; Li S; Louzguine-Luzgin DV; Cao Z; Yoshikawa N; Sato M; Inoue A
    J Microw Power Electromagn Energy; 2009; 43(1):17-22. PubMed ID: 21384718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.
    Sirugudu RK; Vemuri RK; Venkatachalam S; Gopalakrishnan A; Budaraju SM
    J Microw Power Electromagn Energy; 2011; 45(3):128-36. PubMed ID: 24427876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Particle morphology influence on mechanical and biocompatibility properties of injection molded Ti alloy powder.
    Gülsoy HÖ; Gülsoy N; Calışıcı R
    Biomed Mater Eng; 2014; 24(5):1861-73. PubMed ID: 25201399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Short-Pulse Microwave Radiation on Thermochemical Properties Aluminum Micropowder.
    Mostovshchikov A; Gubarev F; Nazarenko O; Pestryakov A
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36769961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Microwave sintering of nanometer powder of alumina and zirconia-based dental ceramics].
    Chen YF; Lu DM; Wan QB; Jin Y; Zhu JM
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2006 Feb; 24(1):73-6. PubMed ID: 16541664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Study on the Heating and Deicing Performance of Microwave-Absorbing Asphalt Mixtures.
    Deng Y; Wang X; Chen L; Liu M; Gao M; Zhao J
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microwave radiation processing of metallic glassy powders.
    Louzguine-Luzgin DV; Li S; Xie GQ; Inoue A; Yoshikawa N; Sato M
    J Microw Power Electromagn Energy; 2009; 43(1):51-5. PubMed ID: 21384723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of material, process parameters, and simulated body fluids on mechanical properties of 13-93 bioactive glass porous constructs made by selective laser sintering.
    Kolan KC; Leu MC; Hilmas GE; Velez M
    J Mech Behav Biomed Mater; 2012 Sep; 13():14-24. PubMed ID: 22842272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Microwave Heating Effect in the Behaviour of Graphene as Second Phase in Ceramic Composites.
    Benavente R; Salvador MD; Centeno A; Alonso B; Zurutuza A; Borrell A
    Materials (Basel); 2020 Mar; 13(5):. PubMed ID: 32138189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microwave absorption in powders of small conducting particles for heating applications.
    Porch A; Slocombe D; Edwards PP
    Phys Chem Chem Phys; 2013 Feb; 15(8):2757-63. PubMed ID: 23321957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TLM simulation of microwave sintering of ceramics using SiC stimulus.
    Amri A; Saidane A
    J Microw Power Electromagn Energy; 2001; 36(2):89-100. PubMed ID: 15040527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-healing properties of recycled asphalt mixtures containing metal waste: An approach through microwave radiation heating.
    González A; Norambuena-Contreras J; Storey L; Schlangen E
    J Environ Manage; 2018 May; 214():242-251. PubMed ID: 29529584
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-Rapid Crystallization of L-alanine Using Monomode Microwaves, Indium Tin Oxide and Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.
    Lansiquot C; Boone-Kukoyi Z; Shortt R; Thompson N; Ajifa H; Kioko B; Constance EN; Clement T; Ozturk B; Aslan K
    Nano Biomed Eng; 2017; 9(2):112-123. PubMed ID: 29657884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.