These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 21384717)

  • 1. Microwave sintering of W-18Cu and W-7Ni-3Cu alloys.
    Mondal A; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2009; 43(1):11-6. PubMed ID: 21384717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave sintering of refractory metals/alloys: W, Mo, Re, W-Cu, W-Ni-Cu and W-Ni-Fe alloys.
    Mondal A; Agrawal D; Upadhyaya A
    J Microw Power Electromagn Energy; 2010; 44(1):28-44. PubMed ID: 21721327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys.
    Shao Y; Yu W; Wu J; Ma H
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Microwave and Conventional Modes of Heating on Sintering Behavior, Microstructural Evolution and Mechanical Properties of Al-Cu-Mn Alloys.
    Muthuchamy A; Srikanth M; Agrawal DK; Annamalai AR
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34208612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave heating of pure copper powder with varying particle size and porosity.
    Mondal A; Agrawal D; Upadhyaya A
    J Microw Power Electromagn Energy; 2009; 43(1):5-10. PubMed ID: 21384716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powder Metallurgical Processing and Characterization of Molybdenum Addition to Tungsten Heavy Alloys by Spark Plasma Sintering.
    Annamalai AR; Muthuchamy A; Srikanth M; Natarajan S; Acharya S; Khisti A; Jen CP
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Microwave sintering of nanometer powder of alumina and zirconia-based dental ceramics].
    Chen YF; Lu DM; Wan QB; Jin Y; Zhu JM
    Hua Xi Kou Qiang Yi Xue Za Zhi; 2006 Feb; 24(1):73-6. PubMed ID: 16541664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of Ultra-Fine-Grained W-TiC Alloys by a Simple Ball-Milling and Hydrogen Reduction Method.
    Lang S; Sun N; Cao J; Yu W; Yang Z; Hou S
    Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640262
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical, Physical, and Mechanical Properties and Microstructures of Laser-Sintered Co-25Cr-5Mo-5W (SP2) and W-Free Co-28Cr-6Mo Alloys for Dental Applications.
    Okazaki Y; Ishino A; Higuchi S
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31817292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Sintering Conditions on Structures and Properties of Sintered Tungsten Heavy Alloy.
    Kunčická L; Kocich R; Klečková Z
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32438710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafine-Grained Tungsten Heavy Alloy Prepared by High-Pressure Spark Plasma Sintering.
    Zhang S; Zhu Q; Li Q; Ji W; Wang W; Fu Z
    Materials (Basel); 2022 Sep; 15(17):. PubMed ID: 36079552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Applying microwave technology to sintering dental zirconia.
    Almazdi AA; Khajah HM; Monaco EA; Kim H
    J Prosthet Dent; 2012 Nov; 108(5):304-9. PubMed ID: 23107238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and electrical properties of microwave-sintered PTC thermistors.
    Fu M; Agrawal D; Fang Y
    J Microw Power Electromagn Energy; 2007; 40(3):133-9. PubMed ID: 17645203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanostructured hydroxyapatite by microwave sintering.
    Seo DS; Hwang KH; Lee JK
    J Nanosci Nanotechnol; 2008 Feb; 8(2):944-8. PubMed ID: 18464431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave versus Conventional Sintering of NiTi Alloys Processed by Mechanical Alloying.
    Teixeira RDS; Oliveira RV; Rodrigues PF; Mascarenhas J; Neves FCFP; Paula ADS
    Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013643
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of aluminum and magnesium based nanocomposites processed using hybrid microwave sintering.
    Eugene WW; Gupta M
    J Microw Power Electromagn Energy; 2010; 44(1):14-27. PubMed ID: 21721326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Densification Kinetics and Structural Evolution During Microwave and Pressureless Sintering of 15 nm Titanium Nitride Powder.
    Zgalat-Lozynskyy O; Ragulya A
    Nanoscale Res Lett; 2016 Dec; 11(1):99. PubMed ID: 26909779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microwave processing of a dental ceramic used in computer-aided design/computer-aided manufacturing.
    Pendola M; Saha S
    Gen Dent; 2015; 63(5):24-8. PubMed ID: 26325637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the Mechanism of Microwave Flash Sintering of Ceramics.
    Bykov YV; Egorov SV; Eremeev AG; Kholoptsev VV; Plotnikov IV; Rybakov KI; Sorokin AA
    Materials (Basel); 2016 Aug; 9(8):. PubMed ID: 28773807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect on the grain size of single-mode microwave sintered NiCuZn ferrite and zinc titanate dielectric resonator ceramics.
    Sirugudu RK; Vemuri RK; Venkatachalam S; Gopalakrishnan A; Budaraju SM
    J Microw Power Electromagn Energy; 2011; 45(3):128-36. PubMed ID: 24427876
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.