These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 21384717)

  • 21. Effect of Short Attritor-Milling of Magnesium Alloy Powder Prior to Spark Plasma Sintering.
    Minárik P; Zemková M; Knapek M; Šašek S; Dittrich J; Lukáč F; Kozlík J; Král R
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32911734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microstructure and Mechanical Properties of W-Al
    Wang C; Dong X; Liu Y; Wei S; Pan K; Zhang C; Xiong M; Mao F; Jiang T; Yu H; Wang X; Chen C
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431395
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microwave assisted sintering of Al-Cu-Mg-Si-Sn alloy.
    Padmavathi C; Upadhyaya A; Agrawal D
    J Microw Power Electromagn Energy; 2012; 46(3):115-27. PubMed ID: 24432468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microstructure and performance of rare earth element-strengthened plasma-facing tungsten material.
    Luo L; Shi J; Lin J; Zan X; Zhu X; Xu Q; Wu Y
    Sci Rep; 2016 Sep; 6():32701. PubMed ID: 27596002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the Influence of Starting Materials and Processing Conditions on the Properties of W/Cu Alloys.
    Montealegre-Meléndez I; Arévalo C; Perez-Soriano EM; Neubauer E; Rubio-Escudero C; Kitzmantel M
    Materials (Basel); 2017 Feb; 10(2):. PubMed ID: 28772502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental research on sintering construction spoil bricks based on microwave heating technology.
    Cheng J; Shao Z; Xu T; Wei W; Qiao R; Yuan Y
    Environ Sci Pollut Res Int; 2021 Dec; 28(48):69367-69380. PubMed ID: 34302238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Powder Metallurgy Route to Ultrafine-Grained Refractory Metals.
    Zhang L; Li X; Qu X; Qin M; Que Z; Wei Z; Guo C; Lu X; Dong Y
    Adv Mater; 2023 Dec; 35(50):e2205807. PubMed ID: 36036512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characteristics of Conventional and Microwave Sintered Iron Ore Preform.
    Equbal A; Ali M; Equbal MA; Srivastava SC; Khan ZA; Equbal MI; Badruddin IA; El-Hady KM; Kamangar S
    Materials (Basel); 2022 Apr; 15(7):. PubMed ID: 35407987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resistance sintering under ultra high pressure: a new approach to produce bulk nanocrystalline refractory metal.
    Zhou Z; Du J; Song S; Ge C
    J Nanosci Nanotechnol; 2009 Feb; 9(2):809-12. PubMed ID: 19441397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microwave Sintering of Silver Nanoink for Radio Frequency Applications.
    Kim KS; Park BG; Jung KH; Kim JW; Jeong MY; Jung SB
    J Nanosci Nanotechnol; 2015 Mar; 15(3):2333-7. PubMed ID: 26413662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microwave sintered nanocomposite electrodes for solid oxide fuel cells.
    Raza R; Zhu B
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5450-4. PubMed ID: 21770204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application.
    Karre R; Kodli BK; Rajendran A; J N; Pattanayak DK; Ameyama K; Dey SR
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():619-627. PubMed ID: 30423747
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect on Microstructure and Mechanical Properties of Microwave-Assisted Sintered H13 Steel Powder with Different Vanadium Contents.
    Chen X; Zhao L; Wei M; Huang D; Jiang L; Wang H
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207815
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of grain size on mechanical, surface and biological properties of microwave sintered hydroxyapatite.
    Dasgupta S; Tarafder S; Bandyopadhyay A; Bose S
    Mater Sci Eng C Mater Biol Appl; 2013 Jul; 33(5):2846-54. PubMed ID: 23623105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accelerated sintering in phase-separating nanostructured alloys.
    Park M; Schuh CA
    Nat Commun; 2015 Apr; 6():6858. PubMed ID: 25901420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Powder Metallurgy Processing of a W
    Waseem OA; Ryu HJ
    Sci Rep; 2017 May; 7(1):1926. PubMed ID: 28512337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid Cellulose-Mediated Microwave Sintering for High-Conductivity Ag Patterns on Paper.
    Jung S; Chun SJ; Shon CH
    ACS Appl Mater Interfaces; 2016 Aug; 8(31):20301-8. PubMed ID: 27441952
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of Cu Based Metallic Binder for Diamond Tools by Microwave Pressureless Sintering.
    Guo S; Ye X; Wang L; Koppala S; Yang L; Hu T; Gao J; Hou M; Hu L
    Materials (Basel); 2018 Aug; 11(8):. PubMed ID: 30115877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemical Synthesis and Oxide Dispersion Properties of Strengthened Tungsten via Spark Plasma Sintering.
    Ding XY; Luo LM; Chen HY; Zhu XY; Zan X; Cheng JG; Wu YC
    Materials (Basel); 2016 Oct; 9(11):. PubMed ID: 28773999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.