These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 21384841)
21. Dissociation of hydrophobic and charged nano particles in aqueous guanidinium chloride and urea solutions: a molecular dynamics study. Li W; Mu Y Nanoscale; 2012 Feb; 4(4):1154-9. PubMed ID: 22105862 [TBL] [Abstract][Full Text] [Related]
22. Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. Horinek D; Netz RR J Phys Chem A; 2011 Jun; 115(23):6125-36. PubMed ID: 21361327 [TBL] [Abstract][Full Text] [Related]
23. Enthalpy-entropy contributions to salt and osmolyte effects on molecular-scale hydrophobic hydration and interactions. Athawale MV; Sarupria S; Garde S J Phys Chem B; 2008 May; 112(18):5661-70. PubMed ID: 18447346 [TBL] [Abstract][Full Text] [Related]
24. Origins of protein denatured state compactness and hydrophobic clustering in aqueous urea: inferences from nonpolar potentials of mean force. Shimizu S; Chan HS Proteins; 2002 Dec; 49(4):560-6. PubMed ID: 12402364 [TBL] [Abstract][Full Text] [Related]
25. On the stability of chymotrypsin inhibitor 2 in a 10 M urea solution. The role of interaction energies for urea-induced protein denaturation. Lindgren M; Westlund PO Phys Chem Chem Phys; 2010 Aug; 12(32):9358-66. PubMed ID: 20563326 [TBL] [Abstract][Full Text] [Related]
26. Dissecting the stability of a beta-hairpin peptide that folds in water: NMR and molecular dynamics analysis of the beta-turn and beta-strand contributions to folding. Griffiths-Jones SR; Maynard AJ; Searle MS J Mol Biol; 1999 Oct; 292(5):1051-69. PubMed ID: 10512702 [TBL] [Abstract][Full Text] [Related]
28. Molecular mechanism for the denaturation of proteins by urea. Almarza J; Rincon L; Bahsas A; Brito F Biochemistry; 2009 Aug; 48(32):7608-13. PubMed ID: 19580327 [TBL] [Abstract][Full Text] [Related]
29. DNA-assisted dispersion and separation of carbon nanotubes. Zheng M; Jagota A; Semke ED; Diner BA; McLean RS; Lustig SR; Richardson RE; Tassi NG Nat Mater; 2003 May; 2(5):338-42. PubMed ID: 12692536 [TBL] [Abstract][Full Text] [Related]
30. The effect of urea on aqueous hydrophobic contact-pair interactions. Shpiruk TA; Khajehpour M Phys Chem Chem Phys; 2013 Jan; 15(1):213-22. PubMed ID: 23160346 [TBL] [Abstract][Full Text] [Related]
31. Effect of flexibility on hydrophobic behavior of nanotube water channels. Andreev S; Reichman D; Hummer G J Chem Phys; 2005 Nov; 123(19):194502. PubMed ID: 16321095 [TBL] [Abstract][Full Text] [Related]
32. Stabilization of aqueous carbon nanotube dispersions using surfactants: insights from molecular dynamics simulations. Tummala NR; Morrow BH; Resasco DE; Striolo A ACS Nano; 2010 Dec; 4(12):7193-204. PubMed ID: 21128672 [TBL] [Abstract][Full Text] [Related]
33. Plugging into proteins: poisoning protein function by a hydrophobic nanoparticle. Zuo G; Huang Q; Wei G; Zhou R; Fang H ACS Nano; 2010 Dec; 4(12):7508-14. PubMed ID: 21080666 [TBL] [Abstract][Full Text] [Related]
34. Molecular insight into the counteraction of trehalose on urea-induced protein denaturation using molecular dynamics simulation. Zhang N; Liu FF; Dong XY; Sun Y J Phys Chem B; 2012 Jun; 116(24):7040-7. PubMed ID: 22607153 [TBL] [Abstract][Full Text] [Related]
35. The molecular basis for the chemical denaturation of proteins by urea. Bennion BJ; Daggett V Proc Natl Acad Sci U S A; 2003 Apr; 100(9):5142-7. PubMed ID: 12702764 [TBL] [Abstract][Full Text] [Related]
36. The dominant interaction between peptide and urea is electrostatic in nature: a molecular dynamics simulation study. Tobi D; Elber R; Thirumalai D Biopolymers; 2003 Mar; 68(3):359-69. PubMed ID: 12601795 [TBL] [Abstract][Full Text] [Related]
37. The structural properties of magainin in water, TFE/water, and aqueous urea solutions: molecular dynamics simulations. Mehrnejad F; Naderi-Manesh H; Ranjbar B Proteins; 2007 Jun; 67(4):931-40. PubMed ID: 17357162 [TBL] [Abstract][Full Text] [Related]
38. Molecular origin of urea driven hydrophobic polymer collapse and unfolding depending on side chain chemistry. Nayar D; Folberth A; van der Vegt NFA Phys Chem Chem Phys; 2017 Jul; 19(28):18156-18161. PubMed ID: 28692101 [TBL] [Abstract][Full Text] [Related]
39. Modeling the self-assembly of lipids and nanotubes in solution: forming vesicles and bicelles with transmembrane nanotube channels. Dutt M; Kuksenok O; Nayhouse MJ; Little SR; Balazs AC ACS Nano; 2011 Jun; 5(6):4769-82. PubMed ID: 21604769 [TBL] [Abstract][Full Text] [Related]
40. Alcohol-induced drying of carbon nanotubes and its implications for alcohol/water separation: a molecular dynamics study. Tian X; Yang Z; Zhou B; Xiu P; Tu Y J Chem Phys; 2013 May; 138(20):204711. PubMed ID: 23742504 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]