BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 21384913)

  • 1. Determinants of ligand binding affinity and cooperativity at the GLUT1 endofacial site.
    Robichaud T; Appleyard AN; Herbert RB; Henderson PJ; Carruthers A
    Biochemistry; 2011 Apr; 50(15):3137-48. PubMed ID: 21384913
    [TBL] [Abstract][Full Text] [Related]  

  • 2. WZB117 (2-Fluoro-6-(m-hydroxybenzoyloxy) Phenyl m-Hydroxybenzoate) Inhibits GLUT1-mediated Sugar Transport by Binding Reversibly at the Exofacial Sugar Binding Site.
    Ojelabi OA; Lloyd KP; Simon AH; De Zutter JK; Carruthers A
    J Biol Chem; 2016 Dec; 291(52):26762-26772. PubMed ID: 27836974
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid substrate translocation by the multisubunit, erythroid glucose transporter requires subunit associations but not cooperative ligand binding.
    Coderre PE; Cloherty EK; Zottola RJ; Carruthers A
    Biochemistry; 1995 Aug; 34(30):9762-73. PubMed ID: 7626647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The red blood cell glucose transporter presents multiple, nucleotide-sensitive sugar exit sites.
    Cloherty EK; Levine KB; Carruthers A
    Biochemistry; 2001 Dec; 40(51):15549-61. PubMed ID: 11747430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic Basis of Cis- and Trans-Allostery in GLUT1-Mediated Sugar Transport.
    Lloyd KP; Ojelabi OA; Simon AH; De Zutter JK; Carruthers A
    J Membr Biol; 2018 Feb; 251(1):131-152. PubMed ID: 29209831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Caffeine inhibits glucose transport by binding at the GLUT1 nucleotide-binding site.
    Sage JM; Cura AJ; Lloyd KP; Carruthers A
    Am J Physiol Cell Physiol; 2015 May; 308(10):C827-34. PubMed ID: 25715702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconciling contradictory findings: Glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters.
    Lloyd KP; Ojelabi OA; De Zutter JK; Carruthers A
    J Biol Chem; 2017 Dec; 292(51):21035-21046. PubMed ID: 29066623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Endofacial competitive inhibition of the glucose transporter 1 activity by gossypol.
    Pérez A; Ojeda P; Valenzuela X; Ortega M; Sánchez C; Ojeda L; Castro M; Cárcamo JG; Rauch MC; Concha II; Rivas CI; Vera JC; Reyes AM
    Am J Physiol Cell Physiol; 2009 Jul; 297(1):C86-93. PubMed ID: 19386788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Red wine and green tea flavonoids are
    Ojelabi OA; Lloyd KP; De Zutter JK; Carruthers A
    J Biol Chem; 2018 Dec; 293(51):19823-19834. PubMed ID: 30361436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The human erythrocyte sugar transporter presents two sugar import sites.
    Hamill S; Cloherty EK; Carruthers A
    Biochemistry; 1999 Dec; 38(51):16974-83. PubMed ID: 10606533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1.
    Hamilton KE; Rekman JF; Gunnink LK; Busscher BM; Scott JL; Tidball AM; Stehouwer NR; Johnecheck GN; Looyenga BD; Louters LL
    Biochimie; 2018 Aug; 151():107-114. PubMed ID: 29857184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asparagine 394 in putative helix 11 of the galactose-H+ symport protein (GalP) from Escherichia coli is associated with the internal binding site for cytochalasin B and sugar.
    McDonald TP; Walmsley AR; Henderson PJ
    J Biol Chem; 1997 Jun; 272(24):15189-99. PubMed ID: 9182541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noncompetitive blocking of human GLUT1 hexose transporter by methylxanthines reveals an exofacial regulatory binding site.
    Ojeda P; Pérez A; Ojeda L; Vargas-Uribe M; Rivas CI; Salas M; Vera JC; Reyes AM
    Am J Physiol Cell Physiol; 2012 Sep; 303(5):C530-9. PubMed ID: 22673619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hexose transporter GLUT1 harbors several distinct regulatory binding sites for flavones and tyrphostins.
    Pérez A; Ojeda P; Ojeda L; Salas M; Rivas CI; Vera JC; Reyes AM
    Biochemistry; 2011 Oct; 50(41):8834-45. PubMed ID: 21899256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of the human erythrocyte glucose transport protein are determined by cellular context.
    Levine KB; Robichaud TK; Hamill S; Sultzman LA; Carruthers A
    Biochemistry; 2005 Apr; 44(15):5606-16. PubMed ID: 15823019
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substitution of tyrosine 293 of GLUT1 locks the transporter into an outward facing conformation.
    Mori H; Hashiramoto M; Clark AE; Yang J; Muraoka A; Tamori Y; Kasuga M; Holman GD
    J Biol Chem; 1994 Apr; 269(15):11578-83. PubMed ID: 8157690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.