These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 21384920)

  • 1. Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11T.
    Hameed A; Arun AB; Ho HP; Chang CM; Rekha PD; Lee MR; Singh S; Young CC
    J Agric Food Chem; 2011 Apr; 59(8):4119-24. PubMed ID: 21384920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muricauda lutaonensis sp. nov., a moderate thermophile isolated from a coastal hot spring.
    Arun AB; Chen WM; Lai WA; Chao JH; Rekha PD; Shen FT; Singh S; Young CC
    Int J Syst Evol Microbiol; 2009 Nov; 59(Pt 11):2738-42. PubMed ID: 19625419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties.
    Prabhu S; Rekha PD; Young CC; Hameed A; Lin SY; Arun AB
    Appl Biochem Biotechnol; 2013 Oct; 171(4):817-31. PubMed ID: 23900617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zeaxanthin biosynthesis by members of the genus Muricauda.
    Prabhu S; Rekha PD; Arun AB
    Pol J Microbiol; 2014; 63(1):115-9. PubMed ID: 25033672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xanthophylls in commercial egg yolks: quantification and identification by HPLC and LC-(APCI)MS using a C30 phase.
    Schlatterer J; Breithaupt DE
    J Agric Food Chem; 2006 Mar; 54(6):2267-73. PubMed ID: 16536606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of nanoparticles of Magnolia bark extract by rapid expansion from supercritical solution into aqueous solutions.
    He S; Zhou B; Zhang S; Lei Z; Zhang Z
    J Microencapsul; 2011; 28(3):183-9. PubMed ID: 21425944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and quantification of zeaxanthin esters in plants using liquid chromatography-mass spectrometry.
    Weller P; Breithaupt DE
    J Agric Food Chem; 2003 Nov; 51(24):7044-9. PubMed ID: 14611169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel zeaxanthin-producing bacteria isolated from a radioactive hot spring water.
    Asker D; Awad TS; Beppu T; Ueda K
    Methods Mol Biol; 2012; 892():99-131. PubMed ID: 22623298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Countercurrent flow of supercritical anti-solvent in the production of pure xanthophylls from Nannochloropsis oculata.
    Cho YC; Wang YC; Shieh CJ; Lin JC; Chang CM; Han E
    J Chromatogr A; 2012 Aug; 1250():85-91. PubMed ID: 22560449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spirulina is an effective dietary source of zeaxanthin to humans.
    Yu B; Wang J; Suter PM; Russell RM; Grusak MA; Wang Y; Wang Z; Yin S; Tang G
    Br J Nutr; 2012 Aug; 108(4):611-9. PubMed ID: 22313576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete genome of a coastal marine bacterium Muricauda lutaonensis KCTC 22339(T).
    Oh J; Choe H; Kim BK; Kim KM
    Mar Genomics; 2015 Oct; 23():51-3. PubMed ID: 25986927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micronization of insulin from halogenated alcohol solution using supercritical carbon dioxide as an antisolvent.
    Snavely WK; Subramaniam B; Rajewski RA; Defelippis MR
    J Pharm Sci; 2002 Sep; 91(9):2026-39. PubMed ID: 12210049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theophylline formulation by supercritical antisolvents.
    Roy C; Vega-González A; Subra-Paternault P
    Int J Pharm; 2007 Oct; 343(1-2):79-89. PubMed ID: 17582714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of lutein and zeaxanthin oxidation products in human and monkey retinas.
    Khachik F; Bernstein PS; Garland DL
    Invest Ophthalmol Vis Sci; 1997 Aug; 38(9):1802-11. PubMed ID: 9286269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supercritical fluid precipitation of recombinant human immunoglobulin from aqueous solutions.
    Nesta DP; Elliott JS; Warr JP
    Biotechnol Bioeng; 2000 Feb; 67(4):457-64. PubMed ID: 10620761
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
    Bakhbakhi Y; Charpentier PA; Rohani S
    Int J Pharm; 2006 Feb; 309(1-2):71-80. PubMed ID: 16412594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A combinational supercritical CO2 system for nanoparticle preparation of indomethacin.
    Tozuka Y; Miyazaki Y; Takeuchi H
    Int J Pharm; 2010 Feb; 386(1-2):243-8. PubMed ID: 19895877
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size controlled production of biodegradable microparticles with supercritical gases.
    Thies J; Müller BW
    Eur J Pharm Biopharm; 1998 Jan; 45(1):67-74. PubMed ID: 9689537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast time-resolved spectroscopy of xanthophylls at low temperature.
    Cong H; Niedzwiedzki DM; Gibson GN; Frank HA
    J Phys Chem B; 2008 Mar; 112(11):3558-67. PubMed ID: 18293955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.