These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 21384948)

  • 1. Transport, phase transitions, and wetting in micro/nanochannels: a phase field/DDFT approach.
    Mickel W; Joly L; Biben T
    J Chem Phys; 2011 Mar; 134(9):094105. PubMed ID: 21384948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wetting transitions in two-, three-, and four-phase systems.
    Hejazi V; Nosonovsky M
    Langmuir; 2012 Jan; 28(4):2173-80. PubMed ID: 22054126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-friction flows of liquid at nanopatterned interfaces.
    Cottin-Bizonne C; Barrat JL; Bocquet L; Charlaix E
    Nat Mater; 2003 Apr; 2(4):237-40. PubMed ID: 12690396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why do pigeon feathers repel water? Hydrophobicity of pennae, Cassie-Baxter wetting hypothesis and Cassie-Wenzel capillarity-induced wetting transition.
    Bormashenko E; Bormashenko Y; Stein T; Whyman G; Bormashenko E
    J Colloid Interface Sci; 2007 Jul; 311(1):212-6. PubMed ID: 17359990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of wetting and anchoring on capillary phenomena in a confined liquid crystal.
    De Las Heras D; Velasco E; Mederos L
    J Chem Phys; 2004 Mar; 120(10):4949-57. PubMed ID: 15267357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wetting behavior and nanotribological properties of silicon nanopatterns combined with diamond-like carbon and perfluoropolyether films.
    Pham DC; Na K; Piao S; Cho IJ; Jhang KY; Yoon ES
    Nanotechnology; 2011 Sep; 22(39):395303. PubMed ID: 21896974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of geometrical characteristics of surface roughness on droplet wetting.
    Sheng YJ; Jiang S; Tsao HK
    J Chem Phys; 2007 Dec; 127(23):234704. PubMed ID: 18154406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interplay between shape and roughness in early-stage microcapillary imbibition.
    Girardo S; Palpacelli S; De Maio A; Cingolani R; Succi S; Pisignano D
    Langmuir; 2012 Feb; 28(5):2596-603. PubMed ID: 22251272
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact line motion in confined liquid-gas systems: Slip versus phase transition.
    Xu X; Qian T
    J Chem Phys; 2010 Nov; 133(20):204704. PubMed ID: 21133449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of macroscale wetting equations on a microrough surface.
    Wang Y; Wang X; Du Z; Zhang C; Tian M; Mi J
    Langmuir; 2015 Mar; 31(8):2342-50. PubMed ID: 25654557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wetting, roughness and flow boundary conditions.
    Vinogradova OI; Belyaev AV
    J Phys Condens Matter; 2011 May; 23(18):184104. PubMed ID: 21508475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissipative particle dynamics simulation of the interplay between spinodal decomposition and wetting in thin film binary fluids.
    Hore MJ; Laradji M
    J Chem Phys; 2010 Jan; 132(2):024908. PubMed ID: 20095710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Condensation and wetting transitions on microstructured ultra-hydrophobic surfaces.
    Dorrer C; Rühe J
    Langmuir; 2007 Mar; 23(7):3820-4. PubMed ID: 17311432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography.
    Jeong HE; Kwak MK; Park CI; Suh KY
    J Colloid Interface Sci; 2009 Nov; 339(1):202-7. PubMed ID: 19656522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Liquid flow in surface-nanostructured channels studied by molecular dynamics simulation.
    Cao BY; Chen M; Guo ZY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Dec; 74(6 Pt 2):066311. PubMed ID: 17280152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability of virtual air walls on micropallet arrays.
    Wang Y; Bachman M; Sims CE; Li GP; Allbritton NL
    Anal Chem; 2007 Sep; 79(18):7104-9. PubMed ID: 17705452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.